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Abstract—Recent years have witnessed a remarkable growth of
micro aerial vehicle (MAV) technologies, which are desirable for
many applications, e.g., warehouse inventory management and
home entertainment. These indoor needs significantly improve
work efficiency while posing fundamental challenges in the design
of MAV state estimation. The state includes a vehicle’s position,
orientation, and velocity, which are fundamental to guide the
motor control and adjust that vehicle’s actions in autonomous
flight. Existing vision-based solutions only work in well-lit texture-
rich environments, while laser-based solutions are limited to
MAVs’ payload and budget. This paper presents WiSion, a robust
and low-cost state estimator that leverages ubiquitous WiFi to
estimate six-degree-of-freedom states for MAVs. Our observation
is that the multipath of WiFi conceals a wealth of information
about a vehicle’s state, which helps combat the temporal drift of
inertial sensors for smooth state estimation. We realize WiSion
by an absolute-relative WiFi sensing module and a WiFi-inertial
state estimation module. It works without knowing access points’
(APs’) positions. We implement the prototype with off-the-shelf
products and conduct experiments in indoor venues. Our results
show that WiSion achieves the position error of 35.25 cm and
the attitude error of 2.6° with a maximum linear velocity of 1.74
m/s. Moreover, WiSion can recover APs’ positions and is robust
to indoor hindrances such as obstacles and multipath.

Index Terms—State estimation, autonomy, wireless localization,
multi-sensor fusion

I. INTRODUCTION

Micro aerial vehicle (MAV) technology has undergone an
impressive expansion in its applications over recent years, as
this once previously exclusive technology for military purposes
has found a thriving purpose in civilian scenarios such as
warehouse inventory management [1]–[3] and home entertain-
ment [4], [5]. Specifically, it has been speculated that MAV
automation in warehouses will grow by 29 billion by 2027,

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

F. Xiao is with Wuhan University of Technology and Huazhong University
of Science and Technology, Wuhan, China (e-mail: feixiao@hust.edu.cn).

S. Zhang and Y. Zhong are with Wuhan University of Technology, Wuhan,
China (e-mail: {shengkai, zhongyi}@whut.edu.cn).

S. Tang is with University of Waterloo, Waterloo, Canada (e-mail:
s99tang@uwaterloo.ca).

S. Shen is with Hong Kong University of Science and Technology, Hong
Kong, China (e-mail: eeshaojie@ust.hk).

H. Dong is with Huazhong University of Science and Technology, Wuhan,
China (e-mail: huixin@hust.edu.cn).

This work was supported in part by the Fundamental Research Funds for the
Central Universities under Grant WUT: 223109003, the Research Project of
Wuhan University of Technology Chongqing Research Institute under Grant
YF2021-06, the National Natural Science Foundation of China under Grant
62002104.
∗The corresponding author is Yi Zhong (zhongyi@whut.edu.cn).

with an annual growth rate of almost 20% [6]. Meanwhile,
home entertainment is one of the major segments in the
drone service market, projected to reach USD 63.6 billion by
2025 [7]. The autonomy of MAVs is the critical demand for
their intelligent applications. MAVs that inspect items along
aisles in a warehouse are usually blocked by stocks, making hu-
man control inefficient and requiring autonomous operations.
Kids’ drones [8] are required to be cheap and intelligent to
interact with humans autonomously. State estimation [9], [10]
is fundamental to these autonomous operations. The state,
including the vehicle’s position, orientation, and velocity, is
the key information to the flight control module, adjusting the
rotary speed of rotors to achieve desired actions.

Conventional methods for MAV state estimation include
global navigation satellite system (GNSS) based, vision-based,
and laser scanner based approaches. Since GNSS signals are
blocked in indoor applications, the mainstream uses cameras
or laser scanners for state estimation [11]–[17]. Laser-based
approaches can provide highly accurate results, but they are
not suitable to be installed on MAVs (power < 100 W) [18]
due to their expensiveness and heavyweight. A laser scanner
will substantially increase the production cost and reduce
the battery life. On the other hand, although vision-based
approaches are low-cost and lightweight, they are limited to
well-lit and texture-rich environments as they require enough
visual features to recover camera poses via projective geometry.
Applications for warehouse management and home entertain-
ment cannot guarantee that MAVs always fly in vision-friendly
environments. Typically, warehouses lack well lighting due
to their high ceilings, stacks shading, and energy conserva-
tion [19]. Home, there can be textureless objects such as white
walls and solid color floors [20].

To ease the problem of visual sensing, recent progress in
radio frequency (RF)-based state estimation demonstrates that
RF signals, e.g., LoRa [21], Ultra-wideband (UWB) [22], [23],
and WiFi [24], [25], bring new opportunities to the MAV
state estimation that are highly resilient to visual limitations.
However, none of the existing works has made it into the
domestic use-cases of MAVs that requires: 1) a low-cost
sensing module that fits the compactness and helps MAVs go
into a mass-market; 2) an instantly deployable system that
works in any unknown venues without any endeavor to setup;
3) a 6-DoF (six degrees of freedom) state estimator that fully
supports the MAV mobility in 3D space. Specifically, UWB
and LoRa based approaches [22], [23], [26] require specialized
hardware, violating the first and second requirements. The
state-of-the-art WiFi-based state estimator [25] only supports
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Fig. 1. Commodity WiFi assists a MAV to autonomously fly through a dark corridor where visual sensing is crippled.

the MAV mobility in 2D space and requires that WiFi access
points (APs) are installed at the same altitude as the MAV,
failing to meet the last requirement.

This paper proposes WiSion, a new state estimator that sat-
isfies all the above requirements. WiSion allows autonomous
navigation in any environment where few WiFi APs are avail-
able. The system uses a WiFi card, which is indispensable to
a MAV for communications. It does not need prior knowledge
of APs’ positions in the venue and supports 6-DoF state
estimation for 3D mobility.

The intuition of using WiFi signals for state estimation is
that we can view connected APs as environmental features,
holding the cues of MAV positions and attitudes like the visual
features in vision-based approaches. Compared to numerous
but volatile visual features from camera images, APs are
few but persistent. APs can even be connected out of sight
(behind walls), while visual features are limited in the field of
camera view. We thoroughly explore the encoded geometric
features from the direct path and the multipath reflections of
WiFi signals and find that these features are all related to 6-
DoF MAV state and APs’ positions, as illustrated in Fig. 1.
Although only WiFi signals may not provide smooth and
accurate state estimates required by the MAV control, such
an exteroceptive sensing modality is promising to achieve
this goal by fusing with an inertial measurement unit (IMU).
The sensor fusion aims to use WiFi sensing to correct the
IMU’s temporal drift, mimicking the working principle of VIO
(Visual-Inertial Odometry) [12]–[14].

Realizing WiSion poses two challenges, thereby designing
two components to address them:

Absolute-relative WiFi sensing: The most recent WiFi
tracking technique, mD-Track [27], has shown that WiFi sig-
nals can estimate rich geometrical parameters for localization.
Besides multipath in indoor venues, another challenge for
MAVs is that the absolute features, which connect the current
state with the sensor output, such as range, angle-of-arrival
(AoA), and Doppler shift, are corrupted by MAV rotations. We,
therefore, propose an inertial-based algorithm to extract the
absolute features correctly. Also, due to the noise of absolute
features, we propose an algorithm that extracts the relative
feature, i.e., displacement, which connects the current and
past states with the sensor output. The relative feature reaches
centimeter-level accuracy and imposes additional geometrical
constraints to the vehicle’s state, thus producing more accurate
state estimation.

WiFi-inertial state estimation: Without knowing APs’

positions and the noise of the above WiFi sensing measure-
ments make state estimation still challenging. Recent simulta-
neous localization and mapping (SLAM) [28], [29] and multi-
dimensional scaling (MDS) [30] based approaches require
visual assistance or fail to deliver accurate results in real-
time. We leverage the MAV’s onboard IMU that measures the
accelerations and the angular rate of its motions to estimate
the APs’ positions and the 6-DoF state simultaneously in real-
time. Our WiFi-inertial state estimation employs a nonlinear
optimization framework to take the WiFi sensing information
to correct the IMU’s temporal drift without cumbersome
initialization.

Results. We implement WiSion on a DJI M100 equipped
with an IMU and an Intel 5300 WiFi card on an Intel Next
Unit of Computing (NUC). We use the 802.11 channel state
information (CSI) tool [31] to obtain wireless channel infor-
mation for absolute-relative WiFi sensing. The experiments
are conducted in a 12 × 8 m2 underground drone test site to
validate individual system modules and overall performance.
The results show that WiSion achieves the MAV’s position
error of 35.25 cm and the attitude error of 2.6° with a
maximum flying velocity of 1.74 m/s. The indoor performance
outperforms outdoor commercialized GPS-based state estima-
tion systems [32]. Moreover, WiSion can recover the APs’
positions with an accuracy of 39.7 cm, and it is robust to
indoor hindrances such as obstacles and multipath.

Contributions. WiSion is a novel state estimator that lever-
ages ubiquitous WiFi to deliver accurate 6-DoF MAV states
in real-time. It fuses the absolute-relative WiFi measurements,
including range, AoA, Doppler shift, and displacement, with
IMU measurements. WiSion consists of a comprehensive WiFi
sensing module and a new WiFi-inertial state estimator to si-
multaneously estimate the vehicle’s state and surrounding APs’
positions without cumbersome initialization. We implement
WiSion on commodity devices and experimentally validate the
system in indoor venues.

The remainder of this paper is organized as follows. Sec-
tion II summarizes related works. Then we introduce the
system overview in Section III. Section IV elaborates on the
WiFi sensing module that extracts the absolution and relative
features. The WiFi-inertial state estimation is presented in
Section V. Section VI evaluates the performance of individual
modules as well as the integrated system. Finally, we conclude
this work in Section VII.
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II. RELATED WORK

State estimation in GNSS-denied environments has been
well studied in the robotics community. The mainstream uses
laser scanners [15]–[17] or cameras [12]–[14], [33]. However,
a laser scanner, e.g., LiDAR, is typically not suitable for
MAVs as its heavyweight and high cost will substantially
reduce the battery life and increase the manufacturing cost.
On the other hand, monocular cameras are more acceptable
to MAVs as the vision-based approaches are lightweight and
accurate. Nevertheless, they demand well lighting and rich
texture, which cannot be guaranteed in a general use case, e.g.,
a house with white walls or a dim warehouse. In summary,
LiDAR and cameras use light as a medium of perception,
sensing the world in a line-of-sight (LOS) fashion. Exploring
non-LOS (NLOS) sensing modalities, whose sensing medium
can traverse through visual blockages, may overcome the
limitations of these optical-based solutions.

Recent years have witnessed advances in versatile ap-
plications using RF sensing, e.g., WiFi imaging [34]–[36],
WiFi localization and tracking [27], [37]–[40], health moni-
toring [41], [42], and object detection [43]–[45]. These bring
the opportunities to make RF signals a powerful sensing
modality that complements optical-based sensing. RF signals
can traverse through obstacles or penetrate walls due to their
large wavelength, being highly resilient to the visual/laser
limitations.

Researchers have proven the feasibility of using RF signals,
such as WiFi [24], [25], [46], LoRa [21], and UWB [47]–[49],
to assist the MAV state estimation. H. Xu et al. [49] leveraged
the omnidirectional sensing capability of UWB to overcome
the field of view limitation of cameras for aerial swarm state
estimation. S. Zhang et al. [21] exploited the high sensitivity in
signal decoding of LoRa signals to achieve long-range/through-
wall MAV state estimation with a single controller. Never-
theless, they require dedicated signal sources such as UWB
nodes and LoRa transceivers to support the system. B. Li et
al. [24] proposed CWISE, a WiFi-based state estimator that
uses the phases of WiFi signals to correct the IMU drift, being
the first feasible MAV state estimator using commodity WiFi.
However, its primitive signal processing method cannot resolve
the indoor multipath. S. Zhang et al. [25] proposed WINS,
an indoor WiFi-based pose estimation that resolves multipath
and allows MAVs to fly in indoors. However, WINS only
supports state estimation in 2D space due to the limitation
of a linear antenna array and the exponential computation
complexity of their parameter estimation. R. Venkatnarayan et
al. [46] proposed WIO (WiFi-Inertial Odometry), which is the
closest to our work. It leverages WiFi CSI to estimate the
moving distance and then fuses with IMU by Kalman filter.
Although it provides promising results in tracking positions, it
only addresses 2D localization and does not consider the effect
of rotations. Moreover, the Kalman filter can only combat the
Gaussian noise for linear systems. Due to the presence of
rotation, MAV dynamic systems are highly nonlinear. Even the
extended Kalman filter fails to solve our problem because it
is susceptible to initialization. Early fixing linearization points
leads to suboptimal results.

Since ubiquitous WiFi is promising to make MAV into
domestic scenarios, we dig deeper into WiFi sensing and
propose WiSion, an extraordinarily lightweight and low-cost
system that achieves accurate 3D 6-DoF state estimation.
WiSion designs new algorithms to 1) efficiently extract multi-
dimensional parameters to enable robust MAV 3D localiza-
tion and orientation estimation; 2) automatically initialize the
system; 3) effectively solve the nonlinearity of 6-DoF state
estimation to improve the accuracy over a long-term run. Dive
into WiSion the closest to the WiFi sensing module are mD-
Track [27] and WiCapture [38]. The fundamental difference in
our context is that a MAV can rotate and change its heading
during the flight. Such a rotation adds rotational Doppler shifts
and corrupts the extracted feature referring to the MAV state.
Therefore, we formulate new models that incorporate MAV
rotations and design new algorithms that utilize the onboard
IMU to solve the problem.

III. SYSTEM OVERVIEW

WiSion allows low-cost and plug-and-play 3D navigation
for MAVs in indoors by 6-DoF state estimation using commod-
ity WiFi. Fig. 2 shows WiSion’s system block diagram. Two
sensors on the MAV are functional in WiSion, a WiFi network
card and an IMU. The network card receives WiFi signals from
multiple (≥ 1) APs, whose positions are initially unknown,
to extract the absolute and relative measurements, including
range, angle, Doppler shift, and displacement. Then WiSion
takes them with IMU measurements to produce smooth and
accurate MAV states. Note that before running the WiFi
sensing module, we use a Vector Network Analyzer to conduct
a one-time calibration of transceiver responses of WiFi chips.
The calibration can substantially reduce the frequency and
phase offset of signals from radio chains [38].

WiSion consists of two components.
The first component is WiFi sensing. This module takes

the calibrated CSI to estimate the parameters of signal paths
related to the absolute and relative features of MAV states.
The absolute features include range, AoA, and Doppler shift,
encoding the vehicle’s absolute positions and velocities. The
relative feature is displacement, imposing spatial constraints
of positions over time. These features provide comprehensive
cues to determine a MAV’s position, velocity, and orientation.

Sensor fusion is the second component. This module fuses
the WiFi sensing with the IMU measurements, including ac-
celerations and angular velocities, transmitting through a Uni-
versal Asynchronous Receiver-Transmitter (UART). Its design
purpose is to use the drift-free WiFi measurements to correct
the IMU’s temporal drift. It employs a factor graph and for-
mulates a nonlinear optimization problem that simultaneously
estimates 6-DoF MAV states and surrounding APs’ positions.
Solving a nonlinear optimization problem requires a good
initialization point to bootstrap iterative algorithms, e.g., the
Gauss-Newton solver. We propose an automatic method to find
a good initialization point efficiently to ease the initialization.

The proposed algorithms are run in the airborne computer,
i.e., the Intel NUC. Finally, we visualize the state estimate,
including the MAV’s position, velocity, orientation, and con-
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Fig. 2. System block diagram.

nected APs’ positions, by sending these data to the user’s
computer using WiFi.

IV. ABSOLUTE-RELATIVE WIFI SENSING

This section describes how WiSion obtains the absolute
motional features, i.e., range, AoA, and Doppler shift, as well
as the relative motional feature, i.e., displacement, between
consecutive packets.

TABLE I
MATHEMATICAL NOTATION IN THE WIFI SENSING.

Symbol Description
ˆ(·) the quantity that can be measured/estimated

x𝑡/x(𝑡) the MAV’s state at time 𝑡
n𝑡/n(𝑡) random noise at time 𝑡

Q𝑡 the covariance of measurements
𝜃/𝜃𝑘 the azimuth angle of the direct path/𝑘 thpath
𝜙/𝜙𝑘 the elevation angle of the direct path/𝑘 thpath
𝜌/𝜌𝑘 the range of the direct path/𝑘 thpath
𝜂/𝜂𝑘 the Doppler shift along the direct path/𝑘 thpath
𝑟𝑘 the signal amplitude of the 𝑘 thpath
𝑐 the light speed in the air
𝑑 the uniform spacing between antennas
𝜆 the signal wavelength
𝝎𝑡 the angular velocity at time 𝑡
Δ𝑡 the time interval between consecutive AoAs
R the rotation matrix from time 𝑘 to current 𝑡
𝜂𝑟𝑖 the rotational Doppler shift w.r.t. 𝑖thantenna
l the displacement between consecutive packets
𝚪 channel state information matrix
Δ 𝑓 time-variant frequency offset
H steering matrix
A the matrix of complex attenuations

Table I describes the mathematical notation used in the WiFi
sensing, listed in the order they appear in the text.

A. Absolute Feature Extraction
Absolute features can be modeled in the following form:

z𝑡 = 𝑓abs (x𝑡 , n𝑡 ) , (1)

where n𝑡 ∼ N (0,Q𝑡 ) is the measurement noise and Q𝑡

denotes the covariance of measurements. Variable x𝑡 denotes
the current state, z𝑡 the sensor output. Function 𝑓abs (·) is a
general nonlinear function. An absolute feature connects the
current state with the sensor output. In particular, we are
interested in ranges, angles, and Doppler shifts. A range and an
angle with respect to an AP can determine the MAV’s position.
And the Doppler shift is related to the velocity.

The range and angle that we need are concealed from
multipath refections. Suppose there are 𝐾 paths of the signal
propagation. The received signal can be expressed by multi-
dimensional parameters.

y(𝑡) =
𝐾∑
𝑘=1

𝑟𝑘𝑒
𝑗2𝜋𝜂𝑘 𝑡h(𝜃𝑘 , 𝜙𝑘 )𝑥(𝑡 − 𝜌𝑘/𝑐) + n(𝑡), (2)

where 𝑥(𝑡) denotes the transmitted signal at time 𝑡, n(𝑡)
3-dimensional Gaussian noise, 𝑐 the light speed. Variable
𝑟𝑘 , h(𝜃𝑘 , 𝜙𝑘 ), 𝜂𝑘 , 𝜃𝑘 , 𝜙𝑘 , 𝜌𝑘 denote the amplitude, steering vec-
tor, Doppler frequency shift, azimuth angle, elevation angle,
and range of 𝑘 thpath, respectively. The absolute features that
contain cues of a MAV’s state are the direct-path parameters,
denoted by 𝜂, 𝜃, 𝜙, 𝜌, as shown in Fig. 3. Since the signal
amplitude 𝑟𝑘 plays no role in our design, we omit this variable
in the following text for brevity.

There have been many approaches that address the mul-
tipath challenge to find the direct-path component for local-
ization [27], [38], [39]. The critical issue for MAVs is that
the vehicle’s rotation corrupts the antenna observed AoA and
causes rotational Doppler shifts that degenerate the accuracy
of the parameter estimation. Therefore, we employ a joint
parameter estimation methodology [27] and design a new
algorithm to address this issue.

AoA estimation. A MAV requires azimuth and elevation
AoAs to determine 3D positions. Thus, we equip the receiver
with a circular array of 3 antennas, having a uniform spacing
of 𝑑 between each other. Considering the signal received along
𝑘 thpath, the steering vector h(𝜃𝑘 , 𝜙𝑘 ) of the circular array is

h(𝜃𝑘 , 𝜙𝑘 ) = [1,Φ(𝜃𝑘 , 𝜙𝑘 ),Ψ(𝜃𝑘 , 𝜙𝑘 )]⊤ , (3)

where
Φ(𝜃𝑘 , 𝜙𝑘 ) = 𝑒− 𝑗2𝜋𝑑 sin(𝜙𝑘 ) cos(𝜃𝑘+ 𝜋3 )/𝜆,

Ψ(𝜃𝑘 , 𝜙𝑘 ) = 𝑒− 𝑗2𝜋𝑑 sin(𝜙𝑘 ) cos(𝜃𝑘 )/𝜆.

𝜆 is the wavelength.
The AoA estimation steers the steering vector by scanning

the incident angle (𝜃𝑘 , 𝜙𝑘 ) and removes the phase differences
at the antennas of an array due to different propagation lengths.
The incident angle that aligns signals across all antennas in
time and produces the maximum signal strength is the AoA
estimate. However, the obtained AoA cannot localize the MAV
due to its rotations. Since the circular array is fixed on the
vehicle, its rotations change the AoAs without any translations.
To obtain the AoA that can localize the vehicle, we have to
compensate for the rotation upon the AoA estimate.

We integrate the angular velocity �̂�𝑡 ∈ R3 measured by the
onboard IMU to compute the rotation between two consecutive
AoAs. Since the IMU data rate (≈ 100 Hz) is much higher
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than the AoA rate (≈ 10 Hz), there are multiple IMU readings
between two consecutive AoAs. Then the rotation of the
vehicle between AoA 𝑖 and 𝑖 + 1 can be computed by

R̂𝑖𝑖+1 =
∫
Δ𝑡
⌊�̂�𝑡×⌋d𝑡, (4)

where ⌊�̂�𝑡×⌋ is the skew-symmetric matrix from the angular
velocity �̂�𝑡 . This solution is effective because the time interval
between consecutive AoAs Δ𝑡 is typically very short (less than
100 ms). The temporal drift of short-term IMU integration is
negligible [50]. Then we convert the rotation matrix R̂𝑖𝑖+1 to
angles and correct the AoA estimates.

Note that due to the noisy CSI from WiFi cards, the
three-antenna circular array has limited multipath resolvability.
Therefore, there may exist multiple candidates that meet the
geometrical constraints in the AoA estimation. Nevertheless,
the following joint parameter estimation can help eliminate
false candidates as they will cause geometrical contradictions
among the parameters such as Doppler shift and range esti-
mates.

Doppler shift and range estimation. A MAV is capable
of rotating and changing its heading directions during its
flight. Such motions make the onboard antennas experience
the Doppler frequency shift from translations and rotations,
as shown in Fig. 4. The Doppler shift for each antenna
combines translational shift 𝜂 and rotational shift 𝜂𝑟 . The rigid
body makes all antennas on the vehicle experience the same
translational velocity but the rotational velocities with different
directions. Thus, the 𝑖thantenna has a frequency shift

𝜂𝑖 = 𝜂𝑡 + 𝜂𝑟𝑖 , 𝑖 = {1, 2, 3}. (5)

To eliminate the effect of such a shift, we need to multiply
the received signal from 𝑖thantenna by 𝑒− 𝑗2𝜋 (𝜂+𝜂𝑟𝑖 )𝑡 . There
are 4 parameters for our three-antenna circular array, making
the estimation intractable. Fortunately, based on the geometry
of the rotation, the sum of the rotational velocity is zero, i.e.,∑
𝑖 v𝑟𝑖 = 0 and thus

∑
𝑖 𝜂𝑟𝑖 = 0. Taking the cubic root of

the product of the received signals over all the antennas can
eliminate the effect of the rotational shifts as

𝑠(𝑡, 𝜂) =
( 3∏
𝑖=1

𝑦𝑖 (𝑡, 𝜂, 𝜂𝑟𝑖 )
) 1

3

=

( 3∏
𝑖=1

𝑒 𝑗2𝜋 (𝜂+𝜂𝑟𝑖 )𝑡𝑥 ′(𝑡)
) 1

3

= 𝑒 𝑗2𝜋𝜂𝑡𝑥 ′(𝑡),

(6)

where 𝑥 ′(𝑡) absorbs h(𝜃, 𝜙) in (2). Therefore, we can cancel
the Doppler shift by multiplying 𝑠(𝑡, 𝜂) by 𝑒− 𝑗2𝜋𝜂𝑡 :

𝑦′(𝑡, 𝜂) = 𝑒− 𝑗2𝜋𝜂𝑡 𝑠(𝑡, 𝜂). (7)

We take this corrected signal to estimate the Doppler shift and
the range jointly.

The range is computed by multiplying the time-of-flight
(ToF) of RF signals with the light speed in the air, thus the
ToF is 𝜌/𝑐. We take an autocorrelation between the corrected
signal and the delay reversed signal, then find the parameter
configuration that results in the maximum correlation. Specif-
ically,

𝑧(𝜂, 𝜌) =
∫
𝑇
𝑦′(𝑡, 𝜂)𝑥∗

(
𝑡 − 𝜌

𝑐

)
d𝑡, (8)

where 𝑇 denotes the signal duration. We can find a peak in
|𝑧 | when the shift and the delay are corrected.

Put it together. We combine all the above parameter
estimation into a comprehensive estimator as follows.

𝑧(𝜃, 𝜙, 𝜂, 𝜌) =
∫
𝑇
𝑒− 𝑗2𝜋𝜂𝑡h𝐻 (𝜃, 𝜙)𝑠(𝑡, 𝜂)𝑥∗

(
𝑡 − 𝜌

𝑐

)
d𝑡. (9)

Then the parameter estimation can be obtained by

(𝜃, 𝜙, 𝜂, �̂�) = arg max
(𝜃,𝜙,𝜂,𝜌)

|𝑧(𝜃, 𝜙, 𝜂, 𝜌) | . (10)

We instead employ a sequential estimation strategy to avoid
the exponential computation complexity in the combinatorial
parameter estimation. In practice, however, it works as fine
as the exhaustive parameter search because these parameters
are partially decoupled. Precisely, the AoA estimation uses
the phase difference among antennas. On the other hand, the
Doppler shift and range have equal impacts on the signal
phases across all antennas, independent of the AoA estimation.
Therefore, we first perform the AoA estimation, then fix the
AoA and estimate the Doppler shift and range.

The above models only consider one path in signal propa-
gation. In indoors, the received signal is the superposition of
signals from multiple reflections, as shown in Fig. 3. We use
the multipath resolving technique in [27] to find the absolute
features of the direct path.

B. Relative Feature Extraction

Although the above absolute features have already encoded
3D position, the accuracy is inferior due to the narrow
bandwidth of WiFi signals. We need to improve positioning
accuracy, which will substantially benefit the state estimation
as the velocity is the first derivative of position. To this end, we
propose an algorithm that extracts a relative position-related
feature, i.e., displacement, to impose spatial constraints over
time. Unlike the absolute features, the relative feature connects
the current and past states with sensor outputs. It can be
modeled as:

z𝑡 = 𝑓rel (x𝑡 , x𝑡−𝑘 , n𝑡 ), (11)

where 𝑘 > 0, x𝑡−𝑘 denotes the past state at time 𝑡 − 𝑘 before
the current time 𝑡. Function 𝑓rel (·) is a general nonlinear
function that represents the mapping between the current state,
a past state, sensor noise, and sensor outputs. In particular,
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Fig. 4. Translational and rotational
Doppler shifts.
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Fig. 5. Displacement with rotations.

the displacement is a special relative feature where 𝑘 = 1.
It measures the incremental change between two consecutive
positions.

We first investigate the channel change from a small dis-
placement l ∈ R3 between two consecutive packets. Sup-
pose there are 𝐾 paths the signal propagates to the receiver.
Consider one antenna of the array as shown in Fig. 5, the
additional traveling distance of 𝑘 thpath signal is (Rr𝑘 )⊤l,
where R ∈ SO(3)1 is the rotation matrix between two
consecutive packets which can be obtained by (4), r𝑘 the
unit vector along the direction of the signal path (𝜃𝑘 , 𝜙𝑘 ),
r𝑘 = [sin 𝜃𝑘 cos 𝜙𝑘 , cos 𝜃𝑘 cos 𝜙𝑘 , sin 𝜙𝑘 ]⊤. This shifts the
phase of the second packet by 2𝜋(Rr𝑘 )⊤l/𝜆. Extending (3)
to multipath has the channel model

�̂� = [h1, · · · , h𝐾 ]A = HA, (12)

where 𝐾 is the number of paths, h𝑘 the abbreviation of
h(𝜃𝑘 , 𝜙𝑘 ), H ∈ C3×𝐾 the steering matrix, A ∈ C𝐾×1 the matrix
of complex attenuations. Matrix �̂� ∈ C3×1 is the channel state
information (CSI) matrix, which is reported by WiFi card.
From (12), we have the channel of the second packet

�̂�
′
= H′A′ = H′LA𝑒 𝑗Δ 𝑓 = H′L 𝑓 A, (13)

where A′ is the matrix of attenuations of the second packet,
L ∈ C𝐾×𝐾 a diagonal matrix with 𝑒− 𝑗2𝜋 (Rr1)⊤l/𝜆, · · · ,
𝑒− 𝑗2𝜋 (Rr𝐾 )⊤l/𝜆. Variable Δ 𝑓 is the time-variant frequency
offset due to the clock drift between the transmitter and
receiver since they are not synchronized [27], [52]. Variable
L 𝑓 absorbs 𝑒 𝑗Δ 𝑓 into L. Notice that in MAV scenarios, even
a small displacement can result different steering matrices of
two consecutive packets due to the vehicle’s rotation.

In this model, 𝜆 is known, the MAV rotation R and AoAs
of multiple paths r1, · · · , r𝐾 can be obtained by § IV-A. Then,
the steering matrix H and H′ can be computed from R and
AoAs.

To estimate the displacement l, we need to cancel the
time-variant offset Δ 𝑓 . The offset Δ 𝑓 changes over different
packets. However, it imposes the same effect on different paths
when receiving a packet. Specifically, 𝑖thdiagonal entry of L 𝑓

is 𝐿𝑖𝑒− 𝑗2𝜋 (Rr𝑖)⊤l/𝜆+Δ 𝑓 where 𝐿𝑖 is the magnitude. Thus, the
following operation on any two diagonal entries, L𝑖,𝑖 and L 𝑗 , 𝑗 ,

1SO(3) is the 3D rotation group, a.k.a., special orthogonal (SO) group. It
is the group of all rotations about the origin of 3D Euclidean space R3. Please
refer to Chapter 7 of [51] for more information.

𝑖 ≠ 𝑗 , cancels Δ 𝑓 :

L𝑖,𝑖
L 𝑗 , 𝑗

=
𝐿𝑖
𝐿 𝑗
𝑒− 𝑗

2𝜋
𝜆 (Rr𝑖)⊤l+Δ 𝑓 −(− 𝑗 2𝜋

𝜆 (Rr 𝑗 )⊤l+Δ 𝑓 )

=
𝐿𝑖
𝐿 𝑗
𝑒− 𝑗

2𝜋
𝜆 (R(r𝑖−r 𝑗 ))⊤l.

(14)

Thus, we take the phase of both sides of (14) and have

𝑠𝑖, 𝑗 = Phase
(

L𝑖,𝑖
L 𝑗 , 𝑗

)
= −2𝜋

𝜆

(
R(r𝑖 − r 𝑗 )

)⊤ l. (15)

From (12), (13), and (15), we consider 𝐾 paths of the signal
propagation and construct the following problem:

arg min
L 𝑓 ,l

∥A′ − L 𝑓 A∥ + ∥QR⊤l − s∥

subject to L 𝑓 is diagonal,
(16)

where s ∈ R𝐾𝐶2 , 𝐾𝐶2 = 𝐾 !
2!(𝐾−2)! , whose entries are from the

combination of 𝑠𝑖, 𝑗 , and Q ∈ R𝐾𝐶2×3, whose rows are from
the combination of − 2𝜋

𝜆 (r𝑖 − r 𝑗 )⊤. When there are multiple
APs, matrix Q and vector s obtained from multiple access
points are concatenated vertically. The system (16) is linear
so that it can be efficiently solved [53] to obtain displacement
l between consecutive packets.

V. WIFI-INERTIAL STATE ESTIMATION

So far, we have discussed how WiSion measures absolute-
relative features related to a MAV state via WiFi. The features,
including AoA, range, Doppler shift, and displacement, are
sufficient to obtain the MAV state. However, the result is
dissatisfactory in accuracy and smoothness due to the noise
of WiFi CSI. This section leverages the onboard IMU that
measures 3D acceleration and angular velocity to achieve
accurate and smooth state estimation.

Our key idea is to take the drift-free features to combat the
IMU drift for better accuracy over a long-term run. Although
IMU provides reliable odometry measurements, the measured
accelerations and angular velocities induce the temporal drift
of state estimation as the error can propagate and accumulate
with integration. On the other hand, the WiFi-based absolute-
relative features are less accurate, but they are drift-free in
that the position, orientation, and velocity can be inferred
by the features measured at the current time, with no error
propagation from past data. We will fuse WiFi and IMU
measurements to improve the accuracy of state estimation and
combat the IMU’s temporal drift.

A. Problem Formulation

Table II describes the mathematical notation used in the
WiFi-inertial state estimation, listed in the order they appear
in the text.

Typical sensor fusion techniques can be categorized by
filtering-based approaches and graph-based approaches. Al-
though filtering-based approaches, e.g., extended Kalman filter,
particle filter, and unscented Kalman filter, have the advantages
of fast processing thanks to its continuous marginalization
of past states, their performance can be suboptimal due to
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TABLE II
MATHEMATICAL NOTATION IN THE WIFI-INERTIAL STATE ESTIMATION.

Symbol Description
(·)𝑏 IMU body frame
(·)𝑎 antenna frame
(·)𝑌𝑋 the frame transformation from 𝑌 to 𝑋
X the full state vector
x𝑘 the MAV state when obtaining 𝑘 thWiFi features
c𝑖 the 𝑖thAP’s position
p MAV position
v MAV velocity
q MAV orientation (quaternion representation)
𝑛 the number of frames in the bundle
𝑚 the number of APs
x𝑏𝑎 antenna-IMU extrinsic parameter
𝑓𝑐 the signal’s central frequency
a𝑡 the acceleration at time 𝑡
g𝑏𝑘 the earth’s gravity in the body frame of 𝑘 thstate
I the set of IMU measurements
A the set of absolute features
R the set of relative features
P covariance matrix
X0 the initial state vector
𝛿(·) the error state representation of a variable
𝚲 the Jacobian matrix of a measurement error term
I the 3 × 3 identity matrix

IMU

IMU IMU

IM
U

IM
U

IMU

MAV state

IMU measurement

Relative feature

AP position

Absolute feature

x1x1

x2x2

x3x3
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x
b
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x
b
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Fig. 6. Graph-based WiFi-inertial state estimation.

early fix of linearization points. In contrast, graph-based ap-
proaches, e.g., pose graph optimization, benefit from iterative
re-linearization of states but it requires more computation
power. With proper marginalization [54], we can obtain a
constant complexity sliding window graph-based approach.

Therefore, we employ a graph-based optimization frame-
work to formulate the sensor fusion problem via multi-view
constraints [21], [55], as illustrated in Fig. 6. Several WiFi and
IMU measurements are kept in a bundle. The bundle size is
limited to bound computational complexity. When the bundle
is full, the oldest state and the corresponding measurements
are marginalized to accept a new state. Here we use the
marginalization technique proposed in our previous work [54].
In this formulation, we aim to find MAV states and APs’
positions that best match the measurement constraints in the
pose graph.

Notice that different sensors provide measurements in their
local reference frames. Precisely, the antenna array measures
AoAs of the array to APs, and the onboard IMU measures the
accelerations and angular velocities of the MAV body. Thus,

we define (·)𝑏 as the body frame, which is aligned with the
IMU body, (·)𝑎 as the antenna frame, which is aligned with
the antenna array. Superscript 𝑏𝑘 and 𝑎𝑘 are the body frame
and the antenna frame when obtaining 𝑘 thWiFi measurement.
The system takes the first body frame (·)𝑏0 as the global frame.
Then we define the full state vector in the bundle as:

X = [x0, x1, . . . , x𝑛, c1, c2, . . . , c𝑚]⊤

x𝑘 = [p𝑏0
𝑏𝑘
, v𝑏𝑘𝑏𝑘 , q

𝑏0
𝑏𝑘
]⊤, 𝑘 ∈ [0, 𝑛],

(17)

where x𝑘 is the state when obtaining 𝑘 thWiFi measurement,
which contains position p𝑏0

𝑏𝑘
, velocity v𝑏𝑘𝑏𝑘 , and rotation q𝑏0

𝑏𝑘
.

And p𝑏0
𝑏0

= [0, 0, 0]⊤, q𝑏0
𝑏0

= [0, 0, 0, 1]⊤. We use Hamilton
quaternions [56] q ∈ R4 to represent rotation in order to
avoid singularity problems. Notation (·)𝑋𝑌 indicates the frame
transformation from 𝑌 to 𝑋 , e.g., p𝑏0

𝑏𝑘
is the position from

𝑘 thbody frame to the first body frame. Variable 𝑛 is the number
of frames in the bundle, 𝑚 the number of APs, c𝑖 the 𝑖thAP’s
position. Notice that there is a constant antenna-IMU extrinsic
parameter x𝑏𝑎 =

[
[p𝑏𝑎; 0], q𝑏𝑎

]⊤ in Fig. 6. Since the antenna
array and IMU are fixed on the platform, x𝑏𝑎, consisting of the
relative rotation and translation between the two frames, can
be manually measured.

Our goal is to estimate the state vector using the WiFi
absolute-relative features to correct the IMU drift. To achieve
this, we first derive the error models of absolute-relative fea-
tures and IMU measurements. Then we solve an optimization
problem that adjusts the state to minimize the errors.

Absolute-relative WiFi sensing error. From the absolute
features to 𝑖thAP, including 𝑗 thcorrected AoA2

r̂𝑎 𝑗𝑖 =
[
sin 𝜃𝑖

𝑎 𝑗 cos 𝜙𝑎 𝑗𝑖 , cos 𝜃𝑖
𝑎 𝑗 cos 𝜙𝑎 𝑗𝑖 , sin 𝜙

𝑎𝑘
𝑖

]⊤
, (18)

range �̂�𝑎 𝑗𝑖 , and Doppler shift 𝜂𝑎 𝑗𝑖 , the measurement error term
can be expressed as

𝑒 (𝑖, 𝑗) (X) =

�̂�
𝑎 𝑗
𝑖 r̂𝑎 𝑗𝑖 −

(
q̂𝑎𝑏

(
q𝑏 𝑗𝑏0
(c𝑖 − p𝑏0

𝑏 𝑗
)
)
+ p̂𝑎𝑏

)
v𝑏 𝑗𝑏 𝑗 −

(
r̂𝑎 𝑗𝑖 r̂𝑎 𝑗

⊤

𝑖

)−1
r̂𝑎 𝑗𝑖

𝑐 �̂�
𝑎𝑗
𝑖

𝑓𝑐

 , (19)

where 𝑓𝑐 is the signal’s central frequency, [p̂𝑎𝑏 , q̂
𝑎
𝑏] is the

inverse of x𝑏𝑎 in Fig. 6, which can be manually measured. The
second block row is derived from the Doppler shift equation
𝜂
𝑎 𝑗
𝑖 = 𝑓𝑐

𝑐

(
r̂𝑎 𝑗𝑖

)⊤
v𝑎 𝑗𝑎 𝑗 and v𝑎 𝑗𝑎 𝑗 = v𝑏 𝑗𝑏 𝑗 since the vehicle is a rigid

body.
From the relative feature, i.e., 𝑗 thdisplacement l̂𝑎 𝑗 , obtained

by multiple APs, the error model is linear as it only involves
the most recent two positions in 𝑏0 frame:

𝑒 𝑗 (X) = p𝑏0
𝑏 𝑗+1
− p𝑏0

𝑏 𝑗
− q̂𝑏𝑎

(
l̂𝑎 𝑗 − p̂𝑎𝑏

)
. (20)

IMU measurement error. Since the IMU data rate is higher
than the WiFi feature rate, multiple IMU measurements exist
between two consecutive WiFi measurements. We need to
pre-integrate IMU data between two WiFi measurements to
construct the odometry constraint that aligns with the WiFi

2We mark the results obtained or trivially computed from the outputs of
WiFi sensing or IMU as ˆ( ·) .
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data. The IMU preintegration technique has been studied
by [13]. We summarize its usage within WiSion.

The raw measurements of IMU at time 𝑡 are acceleration
â𝑡 and angular velocity �̂�𝑡 . Given two time instants [𝑘, 𝑘 + 1]
that correspond to two consecutive WiFi measurements, we
can write the IMU preintegration as follows [13]:

�̂�𝑏𝑘𝑏𝑘+1 =
∬
𝑡 ∈[𝑘,𝑘+1]

�̂�𝑏𝑘𝑡 â𝑡 d𝑡2, �̂�𝑏𝑘𝑏𝑘+1 =
∫
𝑡 ∈[𝑘,𝑘+1]

�̂�𝑏𝑘𝑡 â𝑡 d𝑡,

�̂�𝑏𝑘𝑏𝑘+1 =
∫
𝑡 ∈[𝑘,𝑘+1]

�̂�𝑏𝑘𝑡 ⊗
[

0
1
2 �̂�𝑡

]
d𝑡,

(21)
where ⊗ is the quaternion multiplication operation. This
preintegration summarizes multiple IMU measurements into a
standalone measurement term. Then, based on the kinematics
theory, the IMU measurement error term can be defined as [21]

𝑒𝑘 (X) =


q𝑏𝑘𝑏0

(
p𝑏0
𝑏𝑘+1
− p𝑏0

𝑏𝑘
+ g𝑏0

Δ𝑡2𝑘
2

)
− v𝑏𝑘𝑏𝑘Δ𝑡𝑘 − �̂�

𝑏𝑘
𝑏𝑘+1

q𝑏𝑘𝑏0

(
q𝑏0
𝑏𝑘+1

v𝑏𝑘+1𝑏𝑘+1
+ g𝑏0Δ𝑡𝑘

)
− v𝑏𝑘𝑏𝑘 − �̂�𝑏𝑘𝑏𝑘+1

2
[(
�̂�𝑏𝑘𝑏𝑘+1

)−1
⊗

(
q𝑏0
𝑏𝑘

)−1
⊗ q𝑏0

𝑏𝑘+1

]
𝑥𝑦𝑧


,

(22)
where Δ𝑡𝑘 denotes the time interval between two consecutive
states. Variable g𝑏0 is the initial earth’s gravity vector in the
IMU body frame, which will be initialized in § V-B. Operation
[q]𝑥𝑦𝑧 extracts the vector part of a quaternion.

Our design mimics the idea of bundle adjustment [13] that
aims to find a configuration of the state parameters that min-
imizes the sum of the Mahalanobis norm of all measurement
errors:

min
X


∑
𝑘∈I
∥𝑒𝑘 (X)∥2P𝑏𝑘

𝑏𝑘+1

+
∑
(𝑖, 𝑗) ∈A

𝑒 (𝑖, 𝑗) (X)2
P
𝑎𝑗
𝑖

+
∑
𝑗∈R

𝑒 𝑗 (X)2
P𝑎𝑗

 ,
(23)

where I, A, and R denote the set of IMU measurements,
absolute features, and relative features, respectively. Matrix
P𝑏𝑘𝑏𝑘+1 , P𝑎 𝑗𝑖 , P𝑎 𝑗 are the corresponding covariance matrices. We
use the Mahalanobis norm to compute the cost because the
norm rescales the multi-dimensional variables by their corre-
lations, which is key to achieve a high-precision autonomous
system [13], [21].

From (19) and (22), we can see that the system (23) is
nonlinear due to the unknown orientation. To solve such
a nonlinear optimization problem, we need to find a good
initialization to bootstrap an iterative solution, e.g., the Gauss-
Newton algorithm.

B. Automatic Initialization

The initialization requires a user to hold the MAV and move
around by hand with enough accelerations for several seconds.
It aims to determine the initial MAV state as well as surround-
ing APs’ positions. The initial state includes MAV position,
velocity, and orientation. Notice that the initial orientation
is represented by the earth’s gravity in the body frame g𝑏0 .
If the initial orientation is aligned with the earth’s gravity,

then g𝑏0 = [0, 0, 9.8]⊤. Unfortunately, in practice, we cannot
guarantee the ground/platform where a MAV takes off is
perfectly horizontal. Thus g𝑏0 depends on the initial orientation
and needs to be recovered.

We define the initial state vector as

X0 =
[
x′0, x

′
1, · · · , x′𝑛, c1, c2, · · · , c𝑚

]⊤
x′𝑘 = [p

𝑏0
𝑏𝑘
, v𝑏𝑘𝑏𝑘 , g

𝑏𝑘 ]⊤, 𝑘 ∈ [0, 𝑛], p𝑏0
𝑏0

= [0, 0, 0]⊤.
(24)

Compare to (17), the initial state vector considers g𝑏𝑘 instead
of orientation q𝑏0

𝑏𝑘
. Quaternion q𝑏0

𝑏𝑘
at this stage can be cal-

culated by the integration of angular velocities in that during
the short-term initialization the drift of such an integration is
very limited. The measured q̂𝑏0

𝑏𝑘
makes a key difference that

the system (23) becomes linear.
The error model of absolute features can be rewritten as:

ẑ𝑎 𝑗𝑖 =

[
�̂�
𝑎 𝑗
𝑖 r̂𝑎 𝑗𝑖 − p̂𝑎𝑏(

r̂𝑎 𝑗𝑖 r̂𝑎 𝑗
⊤

𝑖

)−1
r̂𝑎 𝑗𝑖

𝑐 �̂�
𝑎𝑗
𝑖

𝑓𝑐

]
=


q̂𝑎𝑏

(
q̂𝑏 𝑗𝑏0
(c𝑖 − p𝑏0

𝑏 𝑗
)
)

v𝑏 𝑗𝑏 𝑗


= Ĥ𝑎 𝑗

𝑖 X0 + n𝑎 𝑗𝑖 ,

(25)

where n𝑎 𝑗𝑖 is the additional Gaussian noise for absolute fea-
tures. The error model of relative features is:

ẑ𝑎 𝑗 = q̂𝑏𝑎
(
l̂𝑎 𝑗 − p̂𝑎𝑏

)
= p𝑏0

𝑏 𝑗
− p𝑏0

𝑏 𝑗−1
= Ĥ𝑎 𝑗X0 + n𝑎 𝑗 , (26)

where n𝑎 𝑗𝑖 is the additional Gaussian noise for relative features.
The error model of IMU measurements can be expressed as:

ẑ𝑏𝑘𝑏𝑘+1 =


�̂�𝑏𝑘𝑏𝑘+1
�̂�𝑏𝑘𝑏𝑘+1

0̂

 =


q̂𝑏𝑘𝑏0

(
p𝑏0
𝑏𝑘+1
− p𝑏0

𝑏𝑘
+ g𝑏0

Δ𝑡2𝑘
2

)
− v𝑏𝑘𝑏𝑘Δ𝑡𝑘

q̂𝑏𝑘𝑏0

(
q̂𝑏0
𝑏𝑘+1

v𝑏𝑘+1𝑏𝑘+1
+ g𝑏0Δ𝑡𝑘

)
− v𝑏𝑘𝑏𝑘

q̂𝑏𝑘𝑏𝑘+1g
𝑏𝑘+1 − g𝑏𝑘


= Ĥ𝑏𝑘

𝑏𝑘+1
X0 + n𝑏𝑘𝑏𝑘+1 ,

(27)
where n𝑏𝑘𝑏𝑘+1 is the additional Gaussian noise for IMU measure-
ments. We can then recover the initial state and APs’ positions
by solving the following least-square problem:

min
X0


∑
𝑘∈I

ẑ𝑏𝑘𝑏𝑘+1 − Ĥ𝑏𝑘
𝑏𝑘+1

X0

 + ∑
(𝑖, 𝑗) ∈A

ẑ𝑎 𝑗𝑖 − Ĥ𝑎 𝑗
𝑖 X0


+

∑
𝑗∈R

ẑ𝑎 𝑗 − Ĥ𝑎 𝑗X0
 .

(28)

At this stage, the initialization is completed, and the initial
values will bootstrap the solution of our nonlinear WiFi-inertial
state estimation.

C. State Estimation

After the initialization, we take the initial values to bootstrap
the Gaussian-Newton algorithm that solves the nonlinear sys-
tem (23). We use Ceres Solver [57], which is an open-source
C++ library for solving complicated optimization problems. To
this end, we need to derive the linearized model of system (23).

Based on the full state vector (17), the residuals for the
position, velocity, orientation, and APs’ positions can be
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defined:
p = p̂ + 𝛿p, v = v̂ + 𝛿v, c = ĉ + 𝛿c,

q = q̂ ⊗ 𝛿q, 𝛿q ≈
[ 1

2𝛿𝜽
1

]
.

(29)

Following this definition, we operate on the error state repre-
sentation:

𝛿X = [𝛿x0, 𝛿x1, . . . , 𝛿x𝑛, 𝛿c1, 𝛿c2, . . . , 𝛿c𝑚]⊤

𝛿x𝑘 =
[
𝛿p𝑏0
𝑏𝑘
, 𝛿v𝑏𝑘𝑏𝑘 , 𝛿𝜽

𝒃0
𝒃𝒌

]
.

(30)

Then we linearize the cost function (23) with respect to 𝛿X.
Given the current best state estimates X̂, we have:

min
𝛿X


∑
𝑘∈I

𝑒𝑘 (
X̂

)
+ 𝚲𝑏𝑘𝑏𝑘+1𝛿X

2

P𝑏𝑘
𝑏𝑘+1

+
∑
𝑗∈R

𝑒 𝑗 (X̂)
+ 𝚲𝑎 𝑗 𝛿X

2

P𝑎𝑗

+
∑
(𝑖, 𝑗) ∈A

𝑒 (𝑖, 𝑗) (X̂)
+ 𝚲𝑎 𝑗𝑖 𝛿X

2

P
𝑎𝑗
𝑖

 ,
(31)

where 𝚲𝑏𝑘𝑏𝑘+1 , 𝚲
𝑎 𝑗
𝑖 , and 𝚲𝑎 𝑗 are the Jacobians of 𝑒𝑘 (X),

𝑒 (𝑖, 𝑗) (X), and 𝑒 𝑗 (X) at X̂. We take the Jacobians to rearrange
system (31) as

(𝚪I + 𝚪R + 𝚪A) 𝛿X = bI + bR + bA , (32)

where 𝚪I , 𝚪R , 𝚪A and bI , bR , bA are information matrices
and vectors that derived from the Jacobians 𝚲𝑏𝑘𝑏𝑘+1 ,𝚲

𝑎 𝑗 ,𝚲
𝑎 𝑗
𝑖

and the covariance matrices P𝑏𝑘𝑏𝑘+1 ,P
𝑎 𝑗 ,P𝑎 𝑗𝑖 . Solving this sys-

tem updates the state estimates as

X̂ = X̂ ⊕ 𝛿X, (33)

where ⊕ is the compound operator that adds positions, ve-
locities, and APs’ positions but multiplies quaternions for
orientations as in (29). The above procedure indicates that the
Jacobians and covariance matrices in (31) are crucial to solve
the problem.

Absolute WiFi Measurement Terms. We take the deriva-
tive of the residual 𝑒 (𝑖, 𝑗) (X) with respect to error state 𝛿x 𝑗 ,
𝛿c𝑖 and have the Jacobian

𝚲
𝑎 𝑗
𝑖 =

[
𝜕𝑒 (𝑖, 𝑗)
𝜕𝛿x 𝑗

𝜕𝑒 (𝑖, 𝑗)
𝜕𝛿c𝑖

]
=

[
R̂𝑎𝑏R𝑏 𝑗𝑏0

0 −R̂𝑎𝑏
⌊
R𝑏 𝑗𝑏0

(
c𝑖 − p𝑏0

𝑏 𝑗

)
×
⌋
−R̂𝑎𝑏R𝑏 𝑗𝑏0

0 I 0 0

]
,

(34)
where R̂𝑎𝑏 is the rotation matrix converted from quaternion q̂𝑎𝑏 ,
I denotes the identity matrix of size 3. The absolute feature
covariance P𝑎 𝑗𝑖 can be estimated by statistically analyzing the
absolute features.

Relative WiFi Measurement Terms. Similarly, taking the
derivative of the residual 𝑒 𝑗 (X) with respect to error state 𝛿x 𝑗
and 𝛿x 𝑗+1 gives the Jacobian

𝚲𝑎 𝑗 =

[
𝜕𝑒 𝑗

𝜕𝛿x 𝑗
𝜕𝑒 𝑗

𝜕𝛿x 𝑗+1

]
=

[
−I 0 0 0 I 0 0

]
, (35)

where I is the identity matrix of size 3. The covariance P𝑎 𝑗
can also be estimated by analyzing the relative features. Notice

Algorithm 1 WiFi-inertial State Estimation
1: Goal: Output the state of the MAV over time
2: Input: The WiFi module provides AoA r̂𝑎 𝑗𝑖 , range �̂�

𝑎 𝑗
𝑖 ,

Doppler shift 𝜂𝑎 𝑗𝑖 to 𝑖thAP at time 𝑗 , as well as the
displacement l̂𝑎 𝑗 from time 𝑗 to 𝑗 + 1. The IMU provides
acceleration â𝑡 and angular velocity �̂�𝑡 at time 𝑡

3: Keep receiving the WiFi and IMU measurements until the
bundle is full

4: Initialization:
5:

{
ẑ𝑎 𝑗𝑖 , Ĥ

𝑎 𝑗
𝑖

}
← (25);

{
ẑ𝑎 𝑗 , Ĥ𝑎 𝑗

}
← (26){

ẑ𝑏𝑘𝑏𝑘+1 , Ĥ
𝑏𝑘
𝑏𝑘+1

}
← (27)

6: Solving linear system (28) to obtain the initial state X0
7: Non-linear optimization:
8: while True do
9: if Obtaining a new set of WiFi-based features then

10: Remove the oldest state and the corresponding mea-
surements and accept the new measurements in the
bundle

11:
{
𝚲𝑏𝑘𝑏𝑘+1 ,P

𝑏𝑘
𝑏𝑘+1

}
← [13];

{
𝚲
𝑎 𝑗
𝑖 ,P

𝑎 𝑗
𝑖

}
← (34) and abso-

lute feature analysis; {𝚲𝑎 𝑗 ,P𝑎 𝑗 } ← (35) and relative
feature analysis

12: Bootstrapping the Gauss-Newton algorithm [57] with
X0 to solve nonlinear system (31) and obtain the
incremental update 𝛿X

13: Update the state vector using (33)
14: end if
15: end while

that the measurement model of relative feature is linear as in
(20). Therefore, the entries in the Jacobian 𝚲𝑎 𝑗 are constants.

The IMU measurement terms, including the Jacobian 𝚲𝑏𝑘𝑏𝑘+1
and the covariance matrix P𝑏𝑘𝑏𝑘+1 , have been studied and derived
in inertial-based fusion systems [13], [21]. We omit the details
here.

Finally, we summarize the steps of our WiFi-inertial state
estimation in Algorithm 1. The state estimation requires one-
time initialization by solving linear system (28) to obtain
the initial state X0. Then we bootstrap the Gauss-Newton
algorithm implemented by Ceres-Solver [57] with X0 to solve
nonlinear system (31) and obtain an incremental update of the
state 𝛿X. Finally, the state vector is updated using (33). The
nonlinear optimization process is repeated as long as a new set
of WiFi-based features is coming. The bundle will marginalize
the oldest state and the corresponding measurements and
accept the new ones to maintain a fixed size and bound the
computational complexity. Please refer the details of such a
marginalization technique to [54].

VI. SYSTEM EVALUATION

A. Implementation and Experimental Setup

We implement WiSion on an Intel NUC with a 1.8 GHz
Core i5 processor with four cores, an 8 GB RAM, and a 120
GB SSD, running Ubuntu 14.04 LTS equipped with Intel 5300
wireless NICs. A LORD MicroStrain 3DM-GX4-45 IMU is
attached to the NUC. We fix the NUC on a DJI M100 platform,
and the battery of the vehicle powers the NUC. We use the

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3205710

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: WUHAN UNIVERSITY OF TECHNOLOGY. Downloaded on September 26,2022 at 04:39:56 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2022 10

Fig. 7. The prototype implemented on a DJI M100.

Linux 802.11 CSI tool [31] to obtain the wireless channel
information for each packet and implement the state estimator
in C++. Fig. 7 shows the prototype.

To improve the accuracy of absolute and relative WiFi-
based measurements, we use a Vector Network Analyzer to
conduct a one-time calibration of transceiver responses of WiFi
chips [38]. Utilizing ROS as the communication middleware,
we combine WiFi and IMU measurements to estimate the
MAV state and APs’ positions. In our experiments, we use
multiple (1 − 3) APs. The WiFi NIC operates in 5.32 GHz
center frequency on a 40 MHz band. The APs operate in
monitor mode and send packets at 300 Hz. We conduct
experiments in the 12 × 8 square meters of the MAV test site
in our laboratory, a typical indoor setting.

B. Absolute-relative WiFi Measurements

Absolute measurement accuracy. We evaluate the per-
formance in both stationary and mobile scenarios. We place
three APs in different corners of the MAV test site. Both the
transmitters and the receiver are configured to transmit packets
with 3 antennas. Thus, we obtain a 3 × 3 × 30 CSI matrix for
each packet.

In stationary experiments, we use a digital protractor to pro-
vide the ground truth of AoAs. We manually set the orientation
of the antenna array and fix the ground-truth azimuth AoA
from 0 to 360 degrees in a step size of 10 degrees, fix the
ground-truth elevation AoA from 0 to 90 degrees in the same
step size. At each step, each AP transmits 1000 packets to
the NUC. In mobile experiments, we experiment by placing
the NUC on a rotating table driven by a stepper motor and
repeat experiments in different angular velocities 50 times. The
controller of the table provides the ground truth of AoAs. We
control the rotational speed from 0 to 80 degree/s and consider
slow rotations in (0, 20] degree/s and fast rotations in (20, 80]
degree/s for evaluations.

Fig. 8 (a)-(b) plot the cumulative distribution functions
(CDFs) of azimuth and elevation AoA errors in stationary,

mobile in angular velocity less than 20 degree/s, and mobile
in (20, 80] degree/s. As expected, the stationary result is the
best. 80 percentile error is 10 degrees in azimuth AoAs and
8 degrees in elevation AoAs. The AoA accuracy degenerates
with the increasing angular velocity. Nevertheless, the error
does not increase indefinitely. The CDF shows the accuracy is
slightly worse when it goes from 20 to 80 degree/s. The 80
percentile error is 21 and 22 degrees in azimuth and elevation
AoAs. These results demonstrate the reliability of AoAs in
assisting MAV state estimation. The upper part of Fig. 8 (c)
shows that the range and Doppler shift accuracy. We can see
a median error of 56.7 cm, 65.9 cm, and 72.3 cm for range
estimation in stationary and mobile scenarios. The lower part
of Fig. 8 (c) depicts the estimated Doppler shift introduced
by the rotation. It shows the Doppler shifts of three paths,
demonstrating the capability of Doppler shift estimation.

Relative measurement accuracy. The baseline we compare
with is a WiFi tracking algorithm named WiCapture [38].
Its model assumes the target of interest has a fixed heading,
which is not valid for agile MAVs, and thus it cannot cope
with rotational operations. We conduct experiments in two
scenarios to highlight our proposal’s effectiveness, i.e., with
and without rotations. We first put the NUC on a focusing rail
and precisely move the NUC 100 mm along the rail without
rotation. Fig. 9 shows that the performance of our method
is similar to WiCapture as expected. The 80 percentile of
displacement errors is 17.9 mm for WiCapture and 20.2 mm
for WiSion. Then we move the NUC while rotating the NUC
at a speed of 10 degree/s by controlling the stepper motor. The
results show that WiSion significantly outperforms WiCapture.
The 80 percentile is 32.7 mm for WiSion while 81.3 mm for
WiCapture, demonstrating that our model effectively incorpo-
rates a vehicle’s rotation.

Computational cost. Real-time processing is key to MAV
state estimation due to the fast dynamics. WiSion has two
computationally intensive components that keep running on
the fly, the joint search of multi-dimensional parameters
for WiFi sensing and the nonlinear optimization for state
estimation. Note that although the automatic initialization
is computationally intensive, it only needs to be run once.
We enable different WiFi parameter estimations to see their
computation time. To further reduce the computation time, we
resort to the IMU to reduce the parameter searching range [25].
Also, we are interested in the computation time with various
bundle sizes in the optimization.

We summarize the computation cost in Table III. It shows
that the multi-dimensional parameter estimation has a linear
increase in computation time to the number of parameters.
Using the IMU cuts the computation time in half. We also
tune the bundle size in the optimization and see that the
accuracy improves marginally with the increasing bundle size
while the computation time nearly increases exponentially.
Therefore, we choose 𝑛 = 20 in our implementation, as it
is a balancing point between computation cost and accuracy.
WiSion is implemented with three threads to process the
packets from three APs, achieving an output rate of 10 Hz
of the WiFi sensing module. Overall, WiSion provides a state
update rate of 10 Hz, ensuring real-time processing.
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Fig. 8. The accuracy of absolute WiFi measurements.
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Fig. 9. The accuracy of relative WiFi measurements.

TABLE III
THE COMPUTATION COST OF WIFI SENSING AND OPTIMIZATION IN

WISION.

Module Configurations Mean Comp.
Time (ms)

STD
(ms)

Accuracy
(cm)

Azimuth-elevation AoA 84.8 22.2 N/A
AoA + Range 112.2 27.3 N/A
AoA + Range + Doppler
shift

162.5 25.4 N/A

IMU-AoA 22.4 41.3 N/A
IMU-(AoA + Range) 54.9 54.1 N/A
IMU-(AoA + Range +
Doppler shift)

77.9 52.8 N/A

Nonlinear optimization
(n = 8)

8.9 0.6 55.57

Nonlinear optimization
(n = 10)

12.6 1.1 52.24

Nonlinear optimization
(n = 15)

15.4 0.9 43.66

Nonlinear optimization
(n = 20)

20.5 2.3 36.56

Nonlinear optimization
(n = 30)

59.9 4.6 38.11

Nonlinear optimization
(n = 40)

102.4 9.7 32.29

WiSion (n = 20) 105.6 29.2 36.56

C. System-level Performance

We program the MAV to fly in a rectangular pattern in the
test site and configure a wireless network by ROS to build a
connection between a laptop and the airborne NUC. The ROS

connection allows us to run and recompile the airborne code
while the drone is flying. We place three APs at the corners
of the test site. OptiTrack [58] provides the ground truth.
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Fig. 10. The overall performance of WiSion.

1) LOS setting: We first evaluate WiSion under line-of-sight
(LOS) conditions. There is no obstacle between the vehicle
and the APs. Fig. 10 shows the experimental setup and the
overall performance of WiSion in terms of trajectory tracking.
The maximum velocity during the flight is 1.74 m/s. We can
see that the positioning error in 𝑧 axis is larger than other
axes. This is because that the 𝑧-axis component of the position
is partially observable when the vehicle does not change
its height too much. The final positioning and orientation
estimation errors are 35.25 cm and 2.6°, respectively. The AP’s
average position error is 39.23 cm.

To further highlight the effectiveness of WiSion’s modules,
we evaluate the performance of state estimation by incor-
porating different sensor measurements: absolute-WiFi only,
relative-WiFi only, and WiSion that takes all measurements.
In this experiment, the MAV flies 10 times to collect the
data for performance analysis. Fig. 11 shows the impacts on
the positioning. The mean position error is 88.23 cm with
the absolute WiFi measurements due to their noise, while
the mean position error with relative measurements is 109.25
cm. Although the relative measurements are very accurate, it
does not provide drift-free positions and rotations, making the
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system state not completely observable. Finally, when we take
both the absolute and relative WiFi measurements (WiSion),
the mean error is significantly reduced to 34.51 cm.
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Fig. 12 shows the rotation estimation error of WiSion. Since
an IMU only drifts in the yaw direction, we can see that the
roll and pitch angles are highly accurate, while the average
error of the yaw angle is 2.3°. The yaw angle is drift-free
with the correction of WiFi AoAs. In addition, Fig. 13 shows
that WiSion can accurately track the velocity. The maximum
velocity in this experiment is 1.738 m/s.

2) NLOS setting: Now, we evaluate WiSion under NLOS
settings where we put wooden plates in front of the APs
so that two or fewer APs have a decent direct path from
the MAV due to blockages. Fig. 14 and 15 show the details
of position and velocity. As expected, the errors are larger
than LOS deployments. The direct-path AoAs have larger
uncertainties, as WiSion estimates them by the signals with
lower magnitudes after passing through obstacles. In this
experiment, the mean error of the positions over the trajectory
is 96.19 cm with the maximum linear velocity of 1.72 m/s.

3) Accuracy of APs’ Positions: WiSion employs a SLAM-
style formulation. It estimates the MAV state and the APs’
positions simultaneously. We repeat 20 experiments in LOS
and NLOS settings to evaluate the performance of positioning
APs. Fig. 16 is the box plot of AP’s position error. On each
box, the central mark indicates the median, and the bottom and
top edges of the box indicate the 25thand 75thpercentile, respec-
tively. The median error in the LOS setting is 39.7 cm, while
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the median in the NLOS setting is 91.1 cm. The worsening
accuracy in the NLOS setting is because lower signal strengths
in this scenario cause larger errors in absolute measurements,
which are highly correlated with APs’ positions.
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Fig. 16. The accuracy of AP’s posi-
tion.
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4) Impacts of AP density: We repeat the experiments using
different numbers (1 − 3) of WiFi APs to demonstrate the
robustness of WiSion. The MAV flies five times for each
deployment and collects the data for performance analysis.
Fig. 17 plots the position errors to different numbers of APs.
As expected, the accuracy decreases with fewer APs. However,
the errors when using 2 and 3 APs are comparable, and the
final errors are 76.91 cm and 32.36 cm, respectively. However,
the final error of using 1 AP is much larger, 135.29 cm. The
reason is that using 1 AP cannot estimate the displacement.
Only absolute WiFi measurements are available with 1 AP. We
also plot the result of IMU integration without any correction.
It drifts so fast that the final error becomes meaningless,
indicating that the WiFi assistance with only 1 AP is still
functional to mitigate the IMU’s drift. The accuracy is still
applicable to spacious places where do not require precise
control, e.g., flying in a living room or a stadium.

5) Comparison with other related approaches: To highlight
the effectiveness of our design, we compare WiSion with
WINS [25] in 3D space using three APs. WINS is an indoor
WiFi-based state estimation that resolves multipath and allows
MAVs to fly in indoors. However, it only supports state
estimation in 2D space due to the limitation of its linear
antenna array. Thus, WINS can no longer support the MAV
control where the heights of APs and the MAV are different.
In this experiment, we use the ground truth from OptiTrack
to guide the MAV control, and run WINS to record data for
performance analysis.

Fig. 18 shows the statistical results of positioning and
orientation estimation. Since WINS cannot cope with motions
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Fig. 18. Comparison with the state-of-the-art WiFi based state estimation. The
red asterisks indicate the maximum and minimum of the errors. The error bars
denote the 95% confidence interval.

along 𝑧-axis with its linear antenna array, its mean positioning
error goes up to 217.33 cm. The maximum error even reaches
389.67 cm. Meanwhile, the poor positioning performance
indicates that the WiFi measurements of WINS do not deliver
reliable state information. Thus, its AoAs fail to suppress the
gyroscope’s drift in orientation. Although the mean error of the
orientation estimation in WINS is 9.63°, its maximum error
reaches 30.9°, and the 95% confidence interval is very large.
In contrast, WiSion adequately addresses the 3D challenges
with new designs and a circular array. The mean positioning
and orientation error of WiSion are 31.77 cm and 2.27° with
mild maximum errors and 95% confidence intervals.

D. Discussion

WiSion has proven the feasibility of enabling autonomous
navigation for MAVs using PHY information of Wi-Fi in
indoor environments. Nevertheless, there are still limitations
that we need to address to improve the robustness in practice.

First, WiSion requires at least one direct path between
the MAV and an AP to obtain reliable WiFi measurements.
The unreliable measurements from weak signals should be
rejected. One workaround that identifies and rejects unreliable
measurements is to use the RSSI. Intuitively, if the direct-path
component is completely blocked or severely attenuated, the
RSSI should be much lower. Through our experiments, we
observe that the WiFi measurements are very erroneous when
the RSSI is lower than −40 dBm. The MAV receives packets
with such a low RSSI when the AP is blocked by thick walls,
metal obstacles, or too far away from the MAV due to severe
signal degradations. To extend WiSion to be robust in the
absence of direct-path signals, fusing IMU data with the NLOS
WiFi localization technique [59] can be promising.

Second, the moderate accuracy makes WiSion fail to support
precise MAV control. A promising method is to fuse additional
sensors, e.g., optical flow module, to improve the system’s
robustness and accuracy. However, the sensor fusion is non-
trivial to analyze the measurement model and ensure the real-
time processing to support the fast dynamics of MAVs.

In summary, WiSion is the key step towards realizing the
low-cost and instantly deployed state estimation system using
ubiquitous Wi-Fi. In future, we will work on the NLOS signal
rejection and more advanced sensor fusion methods to improve
the robustness of Wi-Fi based state estimators in practice.
Furthermore, with the development of Wi-Fi technology, e.g.,
Wi-Fi 7 [60], Wi-Fi signals have larger signal bandwidth and

more accurate timestamps to enhance the ability of both com-
munication and sensing. Thus, WiSion holds great potential to
achieve centimeter-level state estimation soon.

VII. CONCLUSION

This paper presents WiSion, the first 6-DoF state estimation
system that fully leverages ubiquitous commodity WiFi. Wi-
Sion allows a low-cost solution of MAV navigation to enter
the massive domestic market. It consists of two components:
the absolute-relative WiFi sensing module that estimates multi-
dimensional geometric parameters with MAV rotations, and
the WiFi-inertial state estimation that fuses the WiFi sensing
with the onboard IMU in a nonlinear optimization framework.
We implement WiSion on an Intel NUC attached to a DJI
Matrice100 platform. The Intel NUC equips with an IMU and
a three-antenna circular array. The experiments demonstrate
the ability of 6-DoF state estimation in indoor venues, even
with hindrances between the vehicle and APs. We believe that
WiSion can be more accurate and robust by incorporating other
sensing modalities, e.g., ultrasonic sensors.
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