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Abstract— The versatile nature of agile micro aerial vehicles
(MAVs) poses fundamental challenges to the design of robust
state estimation in various complex environments. Achieving
high-quality performance in textureless scenes is one of the
missing pieces in the puzzle. Previously proposed solutions
either seek a remedy with visual loop closure or leverage RF
localizability with inferior accuracy. None of them support
accurate MAV state estimation in textureless scenes. This
paper presents RFSift, a new state estimator that conquers
the textureless challenge with RF-referenced monocular vision,
achieving centimeter-level accuracy in textureless scenes. Our
key observation is that RF and visual measurements are tied
up with pose constraints. Mapping RF to feature quality and
sift well-matched ones significantly improves accuracy. RFSift
consists of 1) an RF-sifting algorithm that maps 3D UWB
measurements to 2D visual features for sifting the best features;
2) an RF-visual-inertial sensor fusion algorithm that enables
robust state estimation by leveraging multiple sensors with
complementary advantages. We implement the prototype with
off-the-shelf products and conduct large-scale experiments. The
results demonstrate that RFSift is robust in textureless scenes,
10× more accurate than the state-of-the-art monocular vision
system. The code of RFSift is available at https://github.
com/weisgroup/RFSift.

I. Introduction

Micro aerial vehicles (MAVs) are constituting a fast-paced
emerging technology that has the profound potential to
decrease the risks to human life, e.g., assisting firefighters
in searching survivors [1], decrease the execution time and
increase the efficiency of the overall process, e.g., increasing
inventory efficiency by 30× in warehouses with MAV auto-
scanning [2]. Currently, the mainstream for MAV state
estimation uses a monocular camera thanks to its small size,
lightweight, and low cost [3]–[6]. However, it requires well
lighting and rich texture to capture enough visual cues for
state estimation via projective geometry, e.g., optical flow
needs texture for matching. Therefore, it is very challenging
to work in textureless scenes that are commonplace, e.g., a
room with white walls, a solid color floor, mirrors on the
wall, and large windows [7].

One workaround is to manually add visual markers on
textureless surfaces, which is intrusive and labor-intensive.
Another avoids textureless areas by assessing the perception of
quality [8]. More conventional approaches [3], [4] use loop
closure detection as a remedy to correct the accumulated
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Fig. 1. RFSift conquers the textureless challenge, allowing MAV state
estimation in dark or solid color scenes at a centimeter-level accuracy.

error in textureless areas. While this may be sufficient to
cope with temporary textureless flight, the vehicle cannot be
stabilized for a long-term flight in such scenes. Moreover,
there may not even be any loop at all to correct the error. One
may consider deep-learning egomotion estimators, which are
insensitive in texture [9]–[12]. Unfortunately, their stochastic
results are not suitable for deterministic state estimation,
failing to stabilize a MAV over a long-term run. Recently,
efforts have been made to use RF signals, e.g., LoRa [13],
Ultra-WideBand (UWB) [14], [15], and WiFi [16], [17], as an
alternative for MAV state estimation. They are highly resilient
to visual conditions. However, due to the large wavelength
of RF signals and environmental interference, their accuracy
is decimeter-level, an order of magnitude worse than the
monocular vision sensing in vision-friendly venues.

In this paper, we present RFSift, a robust state estimator
that conquers the textureless challenge as shown in Figure 1,
achieving centimeter-level accuracy with a monocular camera,
a UWB module, and an inertial measurement unit (IMU).
RFSift is free of the monocular camera’s adverse effect
in textureless scenes with few (≥ 1) UWB sources, e.g.,
iPhone 11, without the prior knowledge of their positions. The
fundamental problem of textureless that cripples computer
vision is two-fold: fewer features are detected and more
erroneous feature matching via optical flow algorithm [18].
Conventional approaches take all the features to optimize the
state. Surprisingly, we find that sifting few “good” visual
features that are better matched, rather than taking all of
them, significantly improves the accuracy. To sift such
“good” features, the conventional scheme, RANSAC [19], is
ineffective due to the lack of features in textureless scenes. Our
observation is that RF measurements, which are immune to
visual conditions, encode the information of a vehicle’s pose,
providing a reference to distinguish the quality of features.

We realize the above high-level idea by designing two



components:
Visual feature sifting. Quantifying the quality of visual

features requires the mapping function from UWB to visual
measurements. UWB ranges and angles are 3D cues of
locations and orientations, while visual features are the
projection of points in the 3D world onto 2D image planes.
It is nontrivial to establish the mapping from 3D UWB
measurements to 2D visual features. We propose an RF-
sifting algorithm that leverages the nature of micro-motion
between two consecutive frames to compute a score for each
feature that indicates the quality of feature matching.

RF-visual-inertial sensor fusion. Sifted visual features
provide more reliable information of the vehicle’s pose.
To further improve the robustness and accuracy of state
estimation, we fuse RF measurements (range and angle),
sifted visual features, and IMU measurements into a new
bundle adjustment (BA) paradigm and formulate a large
optimization problem. Since RF measurements provide drift-
free localizability, RFSift no longer requires the loop closure
detection for monocular vision systems.

Highlights of our original contributions are as follows.
First, we verify the observation by data-driven simulations
and design an RF-sifting algorithm to sift better visual features.
Second, we fuse RF, visual, and IMU measurements into a
new BA paradigm to enable robust state estimation. Finally,
we demonstrate the effectiveness of RFSift by a prototype
implementation with extensive real-world experiments.

II. RelatedWork

Vision-based state estimation. Monocular vision-based
odometry/SLAM/state estimation has been extensively stud-
ied [4]–[6], [20]–[23]. They are lightweight and highly
accurate as long as application scenarios are well-lighted
and texture-rich. On the contrary, in textureless venues, a
camera cannot capture enough visual features to estimate
MAV states via epipolar geometry. One may say deep-learning
based solutions are insensitive to image texture [9]–[12]. But
they require prior site survey for training, not accurate when
working in unknown venues. Direct methods take all the
raw pixel information in images to mitigate the effect of
textureless scenes [24], [25]. However, they require high
computing power (GPUs) to achieve real-time processing,
which is unavailable for payload-limited MAVs.

RF-based state estimation. Recent years have witnessed
advances in state estimation/navigation using RF signals, e.g.,
WiFi [16], [17], LoRa [13], and UWB [15], [26]. They provide
complementary sensing modalities to optical sensors in that
RF signals can penetrate, reflect, or diffract from objects,
being resilient to visual conditions. Zhang et al. designed
WINS [16] that consists of advanced algorithms to solve
multipath and rotation estimation problems, making WiFi-
based state estimation into indoor scenarios. Although WiFi is
ubiquitously available in modern cities, its narrow bandwidth
still limits the accuracy to decimeter-level. To allow MAVs
flying in scenarios where WiFi is not available, Zhang et
al. proposed Marvel [13], a LoRa backscatter assisted state
estimator that works in emergency scenarios, e.g., firefighting

operations. However, this system requires a dedicated device
to produce chirp signals, and its accuracy is still limited to
decimeter-level due to the narrow bandwidth so that it cannot
support precise control for MAVs. To overcome the limitation
of narrow bandwidth, UWB, an off-the-shelf product that
transmits ultra-wideband signals, has been attractive in MAV
state estimation [14], [15]. The wide bandwidth is highly
robust to the multipath problem of RF signals. However,
due to the lack of clock synchronization and environmental
interference, the accuracy is typical > 10 cm while requiring
multiple anchors’ support.

RF-visual fusion. Combining RF and visual sensing
modalities will conceivably improve MAV state estimation’s
robustness in general use cases [27]–[29]. Nyqvist et al. [27]
uses an extended Kalman filter to fuse UWB and visual
measurements for better robustness. Wang et al. [28] takes
UWB into a graph-based optimization framework to correct
monocular vision drift. Xu et al. [29] takes advantage of
UWB’s omnidirectional sensing range and fuses it with visual
measurements for relative state estimation of an aerial swarm.
The design of these approaches is an if-else paradigm that
enables an automatic switch on the two sensing modalities
and chooses the appropriate one based on their measurement
uncertainties. In textureless scenes, such systems let RF
sensing take over from visual sensing, and thus it reduces to
an RF-based state estimation eventually. Therefore, they still
stuck the accuracy at the decimeter level.

III. Feasibility Study

Conventional vision-based approaches take visual features
as many as possible in the BA. It works fine in texture-rich
regions because ill-matched features are outliers. Majority
inliers contribute reliable information to achieve high accuracy.
However, in textureless or dark scenarios, fewer corners in
images result in less visual features [30], and the camera is
harder to focus, leading to more erroneous feature match-
ing [18]. Well-matched features no longer dominate the pose
estimation. Taking all the observed features will probably
hurt the accuracy.

To verify our claim, we write a data-driven simulator using
monocular vision and run it with the EuRoC dataset [31] for
MAV state estimation. We artificially blur random parts of the
images in the dataset to simulate a textureless condition. The
simulation works in two steps: 1) ranking the tracked visual
features in terms of the re-projection distance of features; 2)
testing the performance with a different number of features
in descending order of the rank.

Specifically, Figure 2 shows the feature ranking method.
We take two consecutive frames, for instance. Two features
tracked by optical flow correspond to a 3D point in the world.
A pair of tracked features encode the camera’s rotation and
translation via epipolar geometry [32]. Due to the distortion
of a camera lens and imaging settings, the feature tracking
can be noisy. It is conceivable that better tracking will give
the relative pose closer to the ground truth, provided by the
dataset [31]. To qualify the tracking quality, we reproject
the visual features from the previous frame to the current
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Fig. 2. The feature ranking method
using the ground-truth pose.
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Fig. 3. Multiple trials with best
features.

frame based on the ground-truth camera pose. Then we
calculate the distance ∆r between the reprojected feature
and its corresponding tracked feature on the image plane.
The smaller the distance the higher rank it will be.

After the ranking, we evaluate the localization performance
with different numbers of best features. Figure 3 shows
the result of the “MH 02 easy” data by testing different
numbers of best features and repeating 20 times, each of
which randomly blurs parts of the images. “k features” means
the system only takes the top-k best features into the BA.
The data in our tests last for 23 seconds. 20 features are
tracked at most. It shows that the best accuracy appears at
“6 features”, which is 1.81 cm. If incorporating all observed
features, the accuracy degenerates to be 4.98 cm. We use
top-30% of the observed features to improve accuracy 2.75×.

To prove our observation’s generality, Figure 4 shows the
statistical results on four Machine Hall datasets and one Vicon
Room dataset. The inner bar of a column denotes the best
accuracy while the upper bar is the accuracy of taking all
the observed features. The number below the inner bar and
upper bar denotes the number of best features used and the
total number of observed features. It shows that there is 3×
accuracy gain when taking less than top-30% best features.
Therefore, sifting the best features is very promising to bolster
state estimation accuracy in textureless settings.

IV. System Design of RFSift

A. Visual Feature Sifting

Our high-level idea is that if we can find reliable relative
poses from other sensors, we can similarly rank the visual
features as in § III. A strawman option is to use the onboard
IMU to infer the pose. However, IMU is an interoceptive
sensor that only measures the vehicle’s internal state without
any connection to environmental data like image features,
making IMU measurements completely uncorrelated with
image features. For example, a MAV inevitably flies at
a constant speed over a long-term run. IMU gives zero
accelerations, i.e., zero translations.

We choose RF range and angle via UWB [33] to find
relative poses. They are immune to visual limitations and
highly resilient to multipath fading. RF measurements and
visual features are correlated with the hidden vehicle’s pose.
Our idea is to estimate the relative pose of the vehicle from
RF measurements and then reproject the visual features based
on the pose. Unfortunately, RF range d̂ and angle θ̂ are scalars.
ˆ(·) denotes the estimated or measured variable throughout the

paper. Notice that we only measure azimuth angle as IMU
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only drifts in azimuth direction for rotation [4]. It is infeasible
to recover the relative translation and rotation as vectors using
RF measurements at two consecutive timestamps.

Our solution resorts to a combination of RF and IMU
measurements. Range d̂ and angle θ̂ are drift-free in pose and
encode the information of 3D positions. They can combat the
IMU drift in four degree-of-freedom (DoF) [4]. However,
we cannot trivially use the raw measurements of these
heterogeneous sensors, there are three issues: 1) the RF and
IMU measurements are temporally misaligned in that their
data rates are different; 2) the RF measurements are biased
due to environmental interference; 3) there is also additive
Gaussian noise for RF measurements.

To align the RF and IMU measurements in time, we use
the IMU preintegration technique [34], [35] to preintegrate
buffered IMU readings as one measurement at the time when
receiving an RF measurement. Typically, the IMU data rate
(100 Hz) is higher than the RF data rate (20 Hz). Given two
time instants [k, k + 1] when obtaining two RF measurements,
we preintegrate acceleration ât and angular rate ω̂t as [34]

α̂ik
ik+1

=

"
t∈[k,k+1]

Rik
t ât dt2, β̂ik

ik+1
=

∫
t∈[k,k+1]

Rik
t ât dt,

γ̂ik
ik+1

=

∫
t∈[k,k+1]

γik
t ⊗

[
0 1

2 ω̂t

]>
dt,

(1)

where ⊗ is the quaternion multiplication operation, (·)i denotes
a measurement in IMU frame, (·)ik

ik+1
the measurement in IMU

frame when receiving (k + 1)thRF measurement with respect
to the IMU frame at kth. We use quaternion and rotation
matrix interchangeably to represent rotation throughout this
paper. Rik

t ∈ SO(3) is the rotation matrix from ik to current
time t. γik

t is the quaternion representation of a incremental
rotation from ik to t, which is available through short-term
integration of gyroscope measurements. α̂ik

ik+1
, β̂ik

ik+1
, and γ̂ik

ik+1

are the preintegrated terms from IMU and they are temporally
aligned with RF measurements.

To address the RF bias issue, we exploit the micro
translation between two consecutive ranges. As shown in
Figure 5, the bias comes from multipath and traversing
through objects. Although UWB signals are highly resilient
to multipath compare with narrow-band signals such as WiFi,
it still can be interfered with objects nearby transmitter or
receiver. Meanwhile, when the signal traversing through
objects, the propagation speed within objects is different
from the speed of light in a vacuum. Thus, the measured
range with respect lthUWB node d̂lk = dlk + bl + nrl where



dlk is the real range, bl the bias, and nrl additive Gaussian
noise of ranges. Since the UWB data rate is 20 Hz, 0.05 s
between two ranges is within the channel coherence time, we
can assume d̂lk and d̂l(k+1) share the same bias. Moreover, the
speed of an indoor MAV is typically less than 2 m/s, then
the translation between two RF ranges is about 0.1 m. In
most cases, the distance between a UWB node and a vehicle
can be greater than 1 m. From the cosine rule, the cosine
value of the apex angle φ is > 0.995. Thus, we can make an
approximation cos φ ≈ 1. From the cosine rule, we have

∆d2
l = d̂2

lk + d̂2
l(k+1) − 2d̂lkd̂l(k+1) cos φ ≈

(
d̂lk − d̂l(k+1)

)2
. (2)

The above operation cancels the bias. On the other hand,
since the azimuth angle θ̂lk to lthUWB node directly reflects
the geometric relationship, there is no bias effect. We only
need to suppress its noise nal .

To suppress the Gaussian noise nrl ∼ N(0, σ2
rl

) and nal ∼

N(0, σ2
al

) (σ2
rl

= 5 cm and σ2
al

= 5◦ for our UWB node), we
employ the Kalman filter (KF) to fuse the RF ranges and
angles with the short-term integration of IMU. We use the
acceleration and angular velocity provided by IMU to predict
the next position and orientation. From the dynamics and
Eqn. (1), the IMU-derived relative translation pik

ik+1
can be

expressed as

pik
ik+1

= vik
ik
∆tk − gik

∆t2
k

2
+ α̂ik

ik+1
,

vik+1
ik+1

= γ̂ik+1
ik

(
vik

ik
− gik ∆tk + β̂ik

ik+1

)
, gik+1 = γ̂ik+1

ik
gik .

(3)

∆tk is the time interval of two RF measurements. gi0 is the
initial gravity representation in the IMU frame, which can
be set through a sampling method [4]. The predicted relative
orientation is γ̂ik+1

ik
.

Then we take the RF measurements to update the predicted
position and orientation. We first consider the measurements
from lthUWB node. Taking the translational direction from
IMU and rendering the RF-based quantity ∆dl observes the

relative translation tik
ik+1

=
pik

ik+1∣∣∣∣pik
ik+1

∣∣∣∣∆dl.

On the other hand, we convert the azimuth angle θ̂lk to be a
quaternion qul

uk . We mark (·)ul as the measurement in the UWB
frame with respect to node l. (·)ul

uk is the kthmeasurement in
frame ul. We can use it to correct the IMU-derived rotation
by minimizing the following cost function:

ri0
ik+1

= min
qi0

ik+1

[(
q̂i

ul
⊗ q̂ul

uk

)−1
⊗ qi0

ik+1
⊗ γ̂ik+1

ik

]
, (4)

where q̂i
ul

is the relative rotation from UWB frame ul to IMU
frame, which can be calibrated with the first observed q̃ul

uk

and the orientation at that moment q̃i0
ik

, q̂i
ul

= q̃i0
ik
⊗

(
q̃ul

uk

)−1
.

Then the observed relative rotation rik
ik+1

=
(
ri0

ik

)−1
⊗ ri0

ik+1
.

With the observation tik
ik+1

and rik
ik+1

, we can update the
predicted pik

ik+1
and γ̂ik+1

ik
via KF. We omit the detailed

derivation of KF since it is a standard tool for combating
Gaussian noise. When multiple UWB nodes connect to
the onboard UWB tag, each can estimate a relative pose.
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Fig. 6. An illustration of the bundle adjustment formulation with UWB,
visual, and IMU measurements.

We choose the pose produced by the node transmitting the
strongest signal.

Based on the RF-based relative pose, we reproject the visual
features from kthframe to (k +1)thframe via epipolar geometry
(refer to Figure 2). This operation forms a set of RF-matched
features, each of which associates with an optical-matched
feature. Finally, we rank the features concerning the distance
between the RF-matched and optical-matched results. The top-
rank feature should have a minimum difference. Each feature
associates with a score, i.e., the normalized image distance
between its optical-matched and RF-matched results. Based on
our abundant tests, we empirically define a threshold ε = 0.4
and allow features whose scores less than ε to participate in
the state estimation.

B. RF-Visual-Inertial Sensor Fusion

The sifted features in § IV-A encodes more reliable pose
information. We now fuse such features with RF and IMU
measurements for better state estimation. The IMU has
already been used to assist the feature sifting (Eqn. (3))
by taking a short-term integration of IMU to compute relative
translations. The temporal drift of such an integration is
negligible [36]. In the long-term, we need to continuously
fuse IMU measurements to bring metric information to visual
odometry and improve the robustness when visual cues are
lost occasionally. The IMU temporal drift can be corrected
by adequately fusing the RF and visual measurements.

An illustration of our RF-visual-inertial sensor fusion is
shown in Figure 6. We formulate a new BA paradigm that
aims to find a configuration of state parameters that best
match all measurement constraints. During the long-term
flight, the system requires to track not only position and
velocity but also the vehicle’s orientation. Moreover, we can
recover the depth of sifted visual features for sparse mapping.
The full state vector in a bundle can be defined as

X = [x1, x2, · · · , xn,u1,u2, · · · ,um, λ1, λ2, · · · , λo]>

xk =
[
pi0

ik
, vik

ik
,qi0

ik

]>
, k ∈ [1, n],

(5)

where xk ∈ R
10 denotes the state in the bundle when obtaining

kthkeyframe, which includes position pi0
ik
∈ R3, velocity vik

ik
∈

R3, and orientation qi0
ik
∈ R4. ul denotes the position of

lthUWB node. m is the total number of the UWB nodes
connected by the states in the bundle. λη is the depth of
ηthvisual feature from its first observation. There are o features
tracked in the bundle. We fix the size of the bundle to ensure
enough multi-view constraints and bound the computation
complexity.



Since we optimize the orientation qi0
ik

during the long-term
flight, the BA problem becomes highly nonlinear. We solve
the state vector by minimizing the Mahalanobis norm of all
measurement residuals:

min
X

 ∑
(l, j)∈U

∥∥∥∥eU
(
ẑu j

l ,X
)∥∥∥∥2

P
u j
l

+
∑

(η, j)∈C

∥∥∥∥eC
(
ẑc j
η ,X

)∥∥∥∥2

P
c j
η

+
∑
k∈I

∥∥∥∥eI
(
ẑik

ik+1
,X

)∥∥∥∥2

Pik
ik+1

 ,
(6)

whereU denotes the set of UWB measurements in the bundle,
C the set of observed visual features, I the set of IMU
measurements. eU

(
ẑu j

l ,X
)
, eC

(
ẑc j
η ,X

)
, and eI

(
ẑik

ik+1
,X

)
are

measurement residuals of UWB, camera, and IMU, respec-
tively. We choose the Mahalanobis norm as the objective
because it rescales measurements by their covariance, enabling
fair correlations of parameters in different scales. These
correlations are key for any high-precision system [37].

We solve this problem using the Gauss-Newton algorithm
implemented by Ceres Solver [38], which is an open-source
C++ library for solving complicated optimization problems.
To use this tool, we need to 1) provide an initialization point of
the state vector to bootstrap the iterative solution; 2) linearize
the nonlinear system and derive the first-order Jacobian matrix
to error state to define a templated functor that computes
the residuals. We adopt the initialization method from [29].
Next, we derive the residuals, their Jacobians, and covariance
matrices. We operate on the error state representation with
the above definition to linearize the system (6).

UWB measurement model. The UWB tag [33] provides
range d̂l j and azimuth angle θ̂l j. We first convert the azimuth
angle into an orientation representation q̂ul

u j in the UWB frame
with respect to node l using roll and pitch angles provided by
IMU. They are accurate as IMU only drifts in the azimuth
direction for rotation [4]. The residual eU

(
ẑu j

l ,X
)

(briefly
denote eu j

l ) can be expressed as

eu j

l =

d̂
2
l j −

(
ul − pi0

i j
− Ri0

i j
p̂i

u

)> (
ul − pi0

i j
− Ri0

i j
p̂i

u

)
2
[(

q̂i
ul
⊗ q̂ul

u j

)−1
⊗ qi0

i j

]
xyz

 , (7)

where ul is the unknown position of lthUWB node and q̂i
ul

obtained in § IV-A. p̂i
u is the relative position between the

onboard UWB tag and the IMU, which can be manually
calibrated once the UWB tag and the IMU are installed on
the platform. qxyz extracts the vector part of the quaternion.

Its Jacobian is Ju j

l =

[
∂e

u j
l

∂δx j

∂e
u j
l

∂δul

]
. The residual covariance

Pu j

l ∈ R
4×4 is the diagonal matrix whose entries are the

noise of UWB measurements, which can be determined by a
statistical analysis of measurements.

Camera measurement model. The pinhole camera model
has been studied by [34]. The difference in our context is
that we consider the frame transformation between IMU
and camera using calibrated extrinsic parameters, relative
translation p̂c

i as well as rotation R̂c
i , making the model more

realistic.

Fig. 7. The prototype of RFSift.

Given ηthsifted visual feature observed in jthcamera frame
ẑc j
η = [x̂c j

η , ŷ
c j
η ]>. Suppose it is first observed in hthframe,

the residual of this feature in jthframe eC
(
ẑc j
η ,X

)
(briefly

denote ec j
η ) is its reprojection error. The corresponding

3D point of this feature fc j
η is fc j

η = [xc j

fη
, yc j

fη
, zc j

fη
]> =

Rc j
c0

(
pc0

ch − pc0
c j + ληRc0

ch ŵch
η

)
, where ŵch

η = [x̂ch
η , ŷ

ch
η , 1]> is the

homogeneous coordinate of the feature. pc0
cx = R̂c

i

(
pi0

ix
− p̂i

c

)
−

R̂c
i Ri0

ix
R̂i

cp̂c
i for pc0

ch and pc0
c j . Rc0

cx = R̂c
i Ri0

ix
R̂i

c for Rc0
ch and Rc0

c j . Its

reprojection point is ζc j
η =

[
xc j

fη
/zc j

fη
, yc j

fη
/zc j

fη

]
. Then the residual

can be defined as
ec j
η = ζ

c j
η − ẑc j

η . (8)

The Jacobian can be computed by taking standard partial
derivatives. The residual covariance Pc j

η ∈ R2×2 is the
diagonal matrix whose entries are the noise of visual feature
measurements.

The IMU measurement model has been studied by [4],
[13], [34]. We omit the details here for brevity.

V. System Implementation and Evaluation

A. System Implementation and Experiment Setup

We implement RFSift on an Intel NUC with a 1.8 GHz Core
i5 processor with 4 cores, running Ubuntu 16.04 LTS. A Mynt
Eye S1040-120/Mono camera and a Nooploop LinkTrack
AoA UWB node are attached to the NUC. An IMU has been
integrated into the Mynt Eye camera. The NUC is equipped
on a DJI M100 platform, and the vehicle’s battery powers
it. All the sensors of our system are commercially available.
The prototype is shown in Figure 7.

We conduct experiments in two venues. We first test RFSift
in an 8 × 6 m2 indoor drone test site of our lab for indoor
experiments. OptiTrack [39] provides the ground truth of the
MAV odometry in the lab. Then, we carry out a large-scale
experiment through a mixed indoor and outdoor setting to
demonstrate RFSift’s long-term practicality.

B. Experiment Result and Comparison

1) Experiments in a textureless indoor site: In the indoor
test site, we deploy one UWB node on the site’s edge to
assist the navigation. The Mynt Eye camera is facing the
white wall of the site to ensure the textureless challenge.
We fly 10 rounds to obtain statistical data and summarize
the results in Table I. It shows that RFSift achieves the best
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Fig. 8. Experiment in the textureless indoor site.
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Fig. 9. Experiment inside and outside our academic building.

TABLE I
RMS ATE comparison with different approaches in a trajectory of 55.915 m.

VINS-
FUSION

ORB-
SLAM3

RFSift W/o
UWB

W/o sifted
features

pi0
ik

(x) 70.5 cm 59.3 cm 4.8 cm4.8 cm4.8 cm 15.5 cm 44.3 cm

pi0
ik

(y) 48.9 cm 41.1 cm 5.3 cm5.3 cm5.3 cm 19.2 cm 18.8 cm

pi0
ik

(z) 11.1 cm 8.7 cm 4.0 cm4.0 cm4.0 cm 9.4 cm 13.7 cm
Orient. 2.142◦ 1.684◦ 0.803◦0.803◦0.803◦ 1.515◦ 3.014◦

performance in textureless scenes in terms of the root mean
square (RMS) of absolute trajectory error (ATE), compared
with ORB-SLAM3 [6] and VINS-FUSION [40]. It also shows
that the sifted visual features (without UWB) can improve
the position accuracy about 2.75× than ORB-SLAM3. On
the other hand, if we only use UWB measurements (without
sifted visual), the system reduces to conventional RF-based
solutions with decimeter-level (50.04 cm) accuracy.

Figure 8 shows the performance of state estimation over
time. The trajectory lasts 111 seconds with length 55.915
m. The final position error over the trajectory for RFSift is
9.18 cm, and the final orientation error is 1.69◦. We use the
rosbag package of ROS to record all sensor data during the
flight for running ORB-SLAM3 for comparison. The final
errors of ORB-SLAM3 are 78.93 cm and 3.23◦.

2) Experiments in a large-scale environment: In this
experiment, we go out of the lab and test RFSift through
the academic building at dusk. Some corridors are dim and
textureless. We apply RFSift for feedback control of the
vehicle. The MAV starts from a landing on the first floor
of the building. It is initialized in the texture-rich landing
where there are stairs and doors with proper lighting. Then
the MAV flies through a dim corridor. We deploy two UWB
nodes (only one is visible in Figure 9 (a)) on the two ends of
the corridor to assist the navigation. Then, the MAV flies out
the building into a texture-rich open field. Finally, the MAV
flies around a statue in front of the building without UWB
nodes. The trajectory length is more than 300.255 meters and
the flight lasts about 320 seconds.

Figure 9 shows the state estimation results of ORB-SLAM3
and RFSift. Although we do not have the ground truth in such
a large-scale experiment, the performance can still be visually
inspected. We can see that the trajectory is smooth and can
be appropriately aligned with Google’s satellite map. We
again use the rosbag package to record the sensor data over
the trajectory and run ORB-SLAM3 by the record. ORB-
SLAM3 works fine in texture-rich areas but drifts in the
textureless area. Since the trajectory does not have any loop,
the drift cannot be corrected. The results in Figure 9 (c)
and (d) show that the drift happens from 73 to 164 seconds,
corresponding to the flight in the textureless area. In particular,
during 150 − 160 seconds, the situation worsens because of
the hover of the MAV. The final drift of ORB-SLAM3 is
[8.16, 2.69,−1.07] m.

VI. Conclusion
This paper presents RFSift, a novel state estimation system

towards robust MAV navigations in general use cases. It fills
the gap of accurate state estimation in textureless regions
by two new designs. One is the RF-sifting algorithm that
quantifies and sifts well-matched visual features to prevent
ill-matched ones’ harm. The second is the RF-visual-inertial
sensor fusion method that enables drift-free accurate state
estimation. We implement RFSift on a DJI Matrice 100
platform with a UWB node, a monocular camera, and an IMU.
The experiments demonstrate the effectiveness of working in
textureless regions. Our future work will extend RFSift to
a self-contained system that can work in the wild without
external support.
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