
Cluster Fair Queueing: Speeding up Data-Parallel
Jobs with Delay Guarantees

Chen Chen, Wei Wang, Shengkai Zhang, Bo Li
Hong Kong University of Science and Technology

{cchenam, weiwa}@cse.ust.hk, szhangaj@connect.ust.hk, bli@cse.ust.hk

Abstract—Cluster scheduler serves as a critical component to
data-parallel systems in datacenters. Ideally, a scheduler should
provide predictable performance with guarantees on the maximal
job completion delay, while at the same time ensuring the
minimal mean response time. Practically however, performance
predictability and optimality are often conflicting with each other.
The results often are a plethora of scheduling policies that either
achieve predictable performance at the expense of long response
times (e.g., max-min fairness), or run the risk of starving some
jobs to obtain the minimal mean response time (e.g., Shortest
Remaining Processing Time First). To address these problems,
we develop a new scheduler, Cluster Fair Queueing (CFQ), which
preferentially offers resources to jobs that complete the earliest
under a fair sharing policy. We show that CFQ is able to minimize
the mean response time while at the same time ensuring jobs
to finish within a constant time after their completion under
fair sharing. Our Spark deployment on a 100-node EC2 cluster
demonstrates that compared to the built-in fair scheduler, CFQ
can decrease the mean response time by 40%, which speeds up
more than 40% of jobs by over 75% on average.

I. INTRODUCTION

With the wide deployment of data-parallel frameworks like
Spark [1] and Hadoop [2], it has become a norm to run data
analytics applications in a large cluster of machines. Having
different applications coexisting in a cluster, data analytics
jobs, each consisting of many parallel tasks, expect predictable
performance with guarantees on the maximal completion delay.
Cluster operators, on the other hand, aim to minimize the
response times of jobs, i.e., the time between the instants of
job arrivals and completions.

Prevalent cluster schedulers deployed in today’s datacenters
rely on fair sharing to provide predictable performance, e.g.,
[3]–[7]. By seeking max-min fair allocations at all times, fair
schedulers aim to assure that each job receives equal amounts
of cluster resources (to the degree possible), regardless of the
behaviors of the other jobs, therefore, achieving performance
isolation from one another. However, it has been widely
confirmed that fair schedulers can be inefficient, and may
result in significantly long response times [8]–[10].

Given the inefficiency of fair schedulers, many recent propos-
als (e.g., [10]–[14]) turn to performance-optimal heuristics to
minimize the job response time, ranging from the Shortest
Remaining Processing Time First (SRPT) to first-in-first-
out (FIFO) variants. These heuristics, while outperforming
fair schedulers with shorter mean response time, fail to
provide predictable job performance. For example, SRPT-based
heuristics prioritize jobs whose remaining work requires the

least processing efforts, which may starve “elephants” (big
jobs) if “mice” (small jobs) keep arriving over time.

Fair sharing and performance-optimal heuristics represent
the two extremes on the design spectrum of cluster scheduling.
Unlike existing approaches that seek a tradeoff between fairness
and performance, e.g., [10], [15], we ask a bold question: is
it possible to achieve the near-optimal response times of jobs
without compromising the performance predictability provided
by fair sharing?

In this paper, we give an affirmative answer to this question.
We propose to preferentially serve jobs that complete the
earliest under fair sharing. This approach achieves the best
of both worlds. First, it minimizes the mean response time
by mimicking the behavior of SRPT: under fair sharing, jobs
receive an equal share of the cluster resources, and those having
the least remaining work likely complete the earliest and are
hence prioritized to schedule. Second, because jobs are served
in ascending order of completion times under fair sharing, it is
less likely to have one delayed long after its completion using
a fair scheduler, nor would it be starved. As a result, jobs can
expect similar predictable performance as under fair sharing.

We develop a new cluster scheduler, Cluster Fair Queueing
(CFQ), to implement this idea. CFQ builds upon the classical
model of Generalized Processor Sharing (GPS) [16], [17]
and extends that from a single network router to a cluster
of machines. Specifically, CFQ maintains the cluster GPS—an
idealized fair scheduler in clusters—as a reference system, and
preferentially offers resources to jobs that complete the earliest
under the cluster GPS. This is technically different from the
traditional fair queueing where the algorithm tracks GPS in the
unit of packets [16]–[19]—the equivalent of tasks in datacenter
environments. In contrast, CFQ focuses on the completion
times of jobs (i.e., the equivalent of flows in fair queueing),
and requires new techniques in its implementation.

We show that CFQ provides the predictable performance
with the job completion delay no more than a small constant
time beyond that under the cluster GPS. We further evaluate
CFQ against different schedulers using a Spark deployment on
a 100-node Amazon EC2 cluster, as well as in simulations over
the workload traces from a Google’s cluster [20]. Compared
to the fair scheduler, CFQ reduces the mean response time by
40% in our Spark deployment, speeding up more than 40%
of jobs by over 75% on average. The improvement over the
fair scheduler becomes more salient at a larger scale. In our
trace-driven simulations, jobs with more than 10 tasks can

expect an order of magnitude shorter response time using CFQ.
Both Spark deployment and trace-driven simulations show that
CFQ achieves the near-optimal response time, close to SRPT.

II. RELATED WORK

Cluster scheduling has been extensively studied in both
theory and systems with different objectives. In this section,
we briefly examine the existing works by illustrating how they
could suffer from long response time or run the risk of violating
performance guarantees. We broadly categorize existing cluster
schedulers into three approaches: fairness, performance-optimal
heuristics, and fairness-performance tradeoffs.

Fairness. Max-min fairness is perhaps the most widely-
adopted cluster scheduling approaches in today’s datacenters.
In a nutshell, it allocates an equal amount of cluster resources
to jobs to run their tasks [3]–[7], [9]. This type of scheduler
usually provides predictable performance by ensuring each
job to receive the deserved fair share throughout its execution,
irrespective of the demand of another. This has been shown,
however, that it does not necessarily lead to job speed up, yet
can suffer from long response times [8]–[10]. For instance,
fair schedulers may slow down jobs by 30-50% on average
compared to a performance-optimal heuristic [10].

Performance-optimal heuristics. Unlike fair schedulers,
the performance-optimal heuristics aim to minimize the mean
response time by completing as many jobs as possible. It
has been shown in theory that the optimal strategy is to
preferentially serve jobs whose remaining processing time is the
shortest [21], [22], known as the Shortest Remaining Processing
Time First (SRPT). The optimality of SRPT motivates many
recent proposals to prioritize the execution of “mice” jobs over
“elephants” [10]–[14]. However, SRPT-based schedulers can
potentially result in unpredictable performance of “elephant”
jobs, whose response time may suffer as a result of the bias
towards “mice”.

Fairness-performance tradeoffs. Given the deficiencies
of fair schedulers and performance-optimal heuristics, recent
works have made attempt to strike a balance between fairness
and performance. For example, Grandl et al. [10] incorporate
fairness into SRPT and propose a tunable fairness knob, with
which a flexible tradeoff between fairness and performance can
be achieved. HSPF [15] aims to approximate SRPT without job
starvation. It employs an aging model that tracks the remaining
work of each job under a virtual fair sharing system. These
works retain better fairness than SRPT. However, they do not
provide any guarantees on the maximal job completion delay.

While performance and fairness do not align with each other
in the existing work, Grandl et al. [10] show by experiments
that optimal performance does not mandate a significant
fairness loss. This encouraging result motivates us to investigate
whether it is feasible and how in a realistic scenario that both
performance guarantee and optimality can be achieved at the
same time.

III. OBJECTIVES AND MOTIVATION

In this section, we first outline our design objectives and
identify the root cause behind the inefficiency of fair sched-

ulers. Through a simple experiment, we show that achieving
the predictable performance does not necessarily incur long
response times. We provide our key intuitions and discuss the
challenges.

A. Objectives
Performance and fairness are the two common requirements

for a cluster scheduler. The performance usually aims to
minimize the mean response time of jobs. The response time
of a job is measured as the time between the moment the
job arrives and the moment it completes. For job-j, let aj be
its arrival time and fj the completion time, then its response
time is defined as fj � aj . It is straightforward to see that
minimizing the mean response time is equivalent to minimizing
the total response time of all jobs, i.e., minimize

P
j fj � aj .

Fairness, on the other hand, is an essential measurement to
dictate predictable performance across different jobs. Specif-
ically, here we say a scheduler achieves the predictable
performance if the completion time of each job is within a
constant of that achieved by a fair sharing policy. Formally,
given a scheduler, let fj be the completion time of job-j and
¯fj the completion time of the same job under fair sharing, then
the scheduler ensures the predictable performance if for any
job-j, there is fj � ¯fj  C, where C is a small constant.

Our objective is to design a cluster scheduler that minimizes
the mean response time of jobs while achieving the predictable
performance comparable to fair sharing at the same time, i.e.,

minimize
X

j

fj � aj ,

subject to fj � ¯fj  C, for all job-j.
(1)

B. Inefficiency of Fair Sharing
Prevalent fair schedulers (e.g., [3]–[7]) maintain instanta-

neous fair allocations at all time, thus the predictable job
performance. However, ensuring instantaneous fairness is not
relevant to shortening the response time. Making things worse,
fair allocations can enforce all jobs to share the cluster with
others throughout the execution—those that could have been
sped up by taking more cluster resources are now limited to
only a smaller share, inevitably delaying their response times.

To illustrate these problems, we run two sample Spark jobs
in a 10-node Amazon EC2 cluster, where job-1 is submitted
first, followed by job-2. Fig. 1a shows the cluster shares of
the two jobs over time using Spark Fair Scheduler [4]. We
see that upon the submission of job-2, the scheduler enforces
fair sharing by taking half of the compute slots from job-1
and using them to serve job-2. This is unnecessary, as it slows
down job-1 without speeding up job-2. If we do not share
the cluster but instead prioritize job-1 over job-2, as shown in
Fig. 1b, we could speed up job-1 without slowing down job-2.

Observing from this, first, maintaining the instantaneous
fairness at all time is not necessary. After all, a job cares little
about the instantaneous resource allocations, but the completion
time of all its tasks. Second, enforcing resource sharing is
inefficient in that it slows down job completion (e.g., job-1 in
Fig. 1a). Recognizing the inefficiency of instantaneous fairness,

0 20 40 60
0

25

50

75

100

Time (s)

S
h
ar

e
o
f

C
lu

st
er

 (
%

)

Job−1

Job−2

(a) Fair sharing.

0 20 40 60
0

25

50

75

100

Time (s)

S
h
ar

e
o
f

C
lu

st
er

 (
%

)

Job−1

Job−2

(b) Prioritizing job-1 over job-2.

Fig. 1: Illustration of the inefficiency of fair sharing. Two
sample Spark jobs, each consisting of 40 tasks, run in a 10-
node EC2 cluster where each node (m4.large) can run 2 tasks.
(a) Cluster shares over time using the fair scheduler. (b) Cluster
shares over time where job-1 is prioritized over job-2.

an earlier work [23] defines that an allocation scheme P , from
a practical point of view, is fair as long as it weakly dominates
instantaneous fair sharing, i.e., no job completes in P later
than it would when instantaneous fair sharing is enforced. This
suggests that good performance and fairness can be achieved
at the same time.

C. Key Intuition

Based on the observations from the experiment, we see that,
in order to minimize the job response times while achieving
the predictable performance, a scheduler should prioritize the
job execution subject to the constraint that each job should
complete not long after its completion under fair sharing, i.e.,
satisfying the constraint of optimization problem (1).

One possible way to satisfy the constraint is to interpret
the completion time of each job under fair sharing (i.e., ¯fj)
as the “deadline” of the job, and seek a scheduling discipline
to minimize the maximal lateness. A commonly used optimal
discipline is to finish the most urgent jobs first, i.e., use Earliest
Deadline First (EDF) [24]. This EDF-like algorithm not only
ensures the predictable performance comparable to fair sharing,
but also shortens the response times by prioritizing the job
executions, rather than enforcing fair allocations at all time.

The question is how this EDF-like algorithm performs
compared to the optimal Shortest Remaining Time First (SRPT)
in terms of minimizing the mean response time. Interestingly,
we find that this EDF-like algorithm mimics the behavior of
SRPT to some extent. To see this, we start to consider fair
sharing, with which jobs are allocated approximately the same
amounts of cluster resources, and are processed at the similar
progress. As a result, those having the least remaining work
likely complete the first, meaning that they are likely assigned
the earliest deadline. These jobs are then prioritized under EDF,
which resembles Shortest Remaining Time First. Therefore,
the mean response time of this EDF-like algorithm should be
near-optimal, close to SRPT.

To summarize, our intuition suggests a promising approach
that likely minimizes the response time while achieving the
predictable performance: preferentially offer resources to jobs
in ascending order of their completion times under fair sharing.

Job-1

Job-2

Job-2

0 4 8
Time (s)

9
1

2

3

Sl
ot Job-2

Job-2

(a) Job-2 completes before job-1.

Job-1

Job-2

Job-3

0 4 8 9 12
1

2

3

Time (s)

Job-3Job-2

Job-2 Job-2

(b) Job-1 completes before job-2.

Fig. 2: Frequent predictions are needed to maintain the job
completion order under a fair scheduler. Each block corresponds
to a task running on a slot. (a) At time 0, job-2 receives 2
slots and is predicted to complete first. (b) The arrival of job-3
at time 4 s reverses the completion orders of job-1 and job-2.

D. Challenges

To implement this approach in real systems, a cluster
scheduler needs to maintain the order of job completion times
under fair sharing. This requires a scheduler to simulate fair
sharing as a reference system: upon a job arrival or completion,
the scheduler updates the reference system with a new resource
allocation, based on which it predicts the completion time of
each job.

While the state-of-the-art profiling techniques are fairly
accurate in predicting the job completion time given an
allocation [12], [25]–[28], frequent predictions are expensive.
Yet, this seems to be inevitable if the reference system naively
simulates the behaviors of prevalent fair schedulers [3]–[7],
where max-min fairness is maintained at all time. To see this,
we refer to the example in Fig. 2a, where two jobs arrive
to a 3-slot cluster at time 0. Job-1 has one task running 9 s
on a slot; job-2 has four tasks, each running 4 s. As shown
in Fig. 2a, to achieve max-min fairness, job-1 receives one
slot while job-2 receives two. Job-2 is predicted to complete
before job-1. Now suppose that job-3 arrives at time 4 s, with
two tasks each running 4 s. As shown in Fig. 2b, to maintain
max-min fairness, each job is allocated one slot, and this time
job-1 is predicted to complete first. In general, to maintain
max-min fairness, resources are reallocated upon a job arrival
or completion, which may result in a different job completion
order. To keep track of the latest completion order, predictions
must be performed to each job frequently.

Frequent predictions can also increase the sensitivity in the
prediction errors. For example, consider two jobs consisting of
an equal number of tasks with the same runtime. Under fair
sharing, both jobs receive an equal share of cluster resources
regardless of the arrivals or completions of the other job,
and hence finish at the same time. Ideally, our approach can
prioritize one job over the other compared to fair sharing, i.e.,
the one that is prioritized can be sped up without slowing
down the other. However, due to the prediction errors, it is
possible that each time a new prediction is made, the job that
was previously believed to complete earlier than the other is
now predicted to finish later, and is assigned a lower service
priority. Thus, frequent predictions may result in frequent
priority reverses, forcing two jobs to time-multiplex the cluster,
which is inefficient as no one can get speedup.

We see from the discussions above that the key challenge to

Job-1
Job-2(a) GPS:

Job-1
Job-2
Job-2

Job-3
Job-3 Job-2

Job-2

0 4 8
Time (s)

9 12

Job-3

(b) CFQ:
1

0 4 7 10.3 11

2
3

Sl
ot

1
2
3

Sl
ot

Fig. 3: Illustration of CFQ in the example of Fig. 2.

implement our approach is to maintain the job completion order
under fair sharing without frequent job predictions or profiling.
We shall answer this challenge in the following sections.

IV. CLUSTER FAIR QUEUEING

In this section, we develop a new scheduling algorithm,
Cluster Fair Queueing (CFQ), that prioritizes the execution of
jobs that complete the earliest under an idealized fair sharing
policy. CFQ is efficient to implement in that each job is profiled
once, only upon its arrival. We show that CFQ achieves the
predictable performance comparable to fair sharing.

A. Cluster Fair Queueing
Idealized model. We have shown in the previous section

that maintaining the job completion orders under the prevalent
fair sharing policies [3]–[7] is expensive. This motivates us to
turn to an idealized fair sharing in a simplified, hypothetical
model in which a task is assumed to be infinitely divisible and
can be sped up using more than one slot. That is, if we use
n slots to service a task that runs l time units on one slot,
we can finish the task in l/n time units. Under the idealized
model, fair sharing simply allocates each job the same number
of slots at all time. Specifically, suppose that N jobs run in
an M -slot cluster. Under the idealized fair scheduler, each job
is allocated M/N slots, and is serviced at the same progress.

Cluster Fair Queueing. Our algorithm simulates the ide-
alized fair sharing as a reference system in the background.
Whenever a compute slot becomes available in the real system,
the algorithm offers that slot to a task of the backlogged
job that completes the earliest in the reference system. As a
running example, Fig. 3 illustrates the algorithm in the previous
example of Fig. 2. At time 0, there are only two jobs, where
job-1 completes earlier than job-2 under the idealized fair
sharing (Fig. 3a), and is assigned the highest priority in the
real system. Since job-1 has only one task and takes one slot,
the remaining two slots go to job-2 (Fig. 3b). Later at time 4
s, job-3 arrives, who completes earlier than job-2 under the
idealized fair sharing (Fig. 3a). Job-3 is assigned a higher
priority than job-2 in the real system, and the two slots that
were previously used to service job-2 are offered to job-3 when
they become available (Fig. 3b). The allocation remains until
job-3 completes at 8 s, after which job-2 regains the two slots
and resumes execution.

Maintaing the idealized fair sharing as a reference system
is preferred than simulating the prevalent fair schedulers. First,
with the idealized fair sharing, perfect fairness is achieved

at all time: each job is allocated the same number of slots
and is serviced at the same progress. This is not possible
with the prevalent fair schedulers, where different jobs may
receive different number of slots (e.g., job-1 and job-2 in
Fig. 2a). Also, since tasks are indivisible in practice and
cannot be preempted during the execution, a newly arrived
job may not be assigned slots immediately, which results in
temporary unfairness. Therefore, compared to the prevalent fair
schedulers, the idealized fair sharing ensures better predictable
job performance.

Moreover, unlike the prevalent fair schedulers, the idealized
fair sharing can be efficiently maintained without the need for
frequent prediction of job completion orders, thus avoiding the
implementation issues described in Sec. III-D. Because jobs
are allocated the same number of slots and are serviced at the
same progress at all time under the idealized fair scheduler,
the completion orders of two jobs, once determined, do not
change over time. More precisely, for a newly arrived job, if
the processing time it requires—measured by the slot-time
production—is less (greater) than the remaining slot-time
required by an existing job, the new one completes earlier (later)
than the existing one, regardless of the future job arrivals or
completions. This consistency in job completion orders makes
frequent predictions and updates no longer needed. We shall
show in Sec. IV-C that it is sufficient to track the job completion
orders by profiling the required slot-time of each job only upon
its arrival.

We refer to our algorithm as Cluster Fair Queueing (CFQ)
as the idealized fair scheduler resembles Generalized Processor
Sharing (GPS) in the classical fair queueing [16], [17]. GPS
was initially proposed as an idealized algorithm to fairly share
the link bandwidth of a router among different flows. In GPS,
the equivalent of a job is a flow; the equivalent of a task is
a packet. GPS can be accurately implemented as a practical
packet scheduler by WFQ [16], [17], where the packet that
completes the earliest in GPS is scheduled first.

CFQ vs. fair queueing. CFQ differs from the traditional
fair queueing algorithms in both the design philosophy and
algorithmic behaviors. First, traditional fair queueing algorithms
such as WFQ [16] and PGPS [17] aim to achieve fair bandwidth
allocation by closely tracking GPS in practice. To do so, these
algorithms track the packet completion times in GPS so as
to interleave the service of packets (tasks) across flows (jobs)
as much as possible. In contrast, CFQ aims to speed up the
completion of jobs by prioritizing their executions so as to
service all the tasks of each job in batches.

Second, traditional fair queueing algorithms are the single-
server schedulers, where packets (tasks) are sequentially
serviced on an outgoing link of a router, one at a time.1 In
contrast, CFQ is a multi-server scheduler, where multiple tasks
run on a cluster of machines in parallel. Compared to single-
server scheduling, multi-server scheduling is more complex,
and is technically more challenging to analyze [18], [19]. In

1Some fair queueing algorithms are multi-server schedulers, e.g., [18], [19].
These algorithms aim to achieve fair bandwidth allocations across multiple
links by closely tracking multi-server GPS in the unit of packets (tasks).

TABLE I: Summary of important notations and definitions.

M The number of slots available in a cluster
f̄j The job completion time in GPS
fj The job completion time in CFQ
Lj The slot-time of job-j

L
max

The maximal slot-time of all jobs
l
max

The maximal task runtime
aj The arrival time of job-j
ej The ending time of the slowdown period of job-j

addition, many nice properties for single-server scheduling are
no longer held in the context of multi-server scheduling. For
example, it is well known that given an input workload on a
single server, no matter what scheduling algorithms are used, as
long as the algorithms are work conserving—meaning that the
server keeps busy if there is a backlogged packet (task)—the
busy periods (i.e., the time interval during which the server is
busy) of these algorithms overlap. This property plays the key
role in the performance analysis of fair queueing algorithms
[16], [17]. However, multi-server scheduling does not have this
property. As shown in Fig. 3, the busy periods of CFQ and
idealized fair sharing do not overlap, though both algorithms
are work conserving.

To summarize, CFQ adopts a different design philosophy
from the traditional fair queueing algorithms, and is technically
more difficult to analyze. Nevertheless, we next show that CFQ
is more than a simple heuristic.

B. Delay Analysis

CFQ achieves the predictable job performance. With CFQ,
a job is guaranteed to complete within a small constant time
after its completion in GPS. Our analysis critically focuses
on the slowdown period of a job. In particular, we say a job
is slowed down at time t if it has a backlogged task waiting
for service. In other words, at any moment in the slowdown
period, the job could have run more tasks if receiving more
slots. Because slowdown delays the job completion, bounding
the timespan of the slowdown periods is the key to analyzing
the longest possible delay.

Suppose N jobs run on an M -slot cluster. Let jobs be indexed
in ascending order of the start time at which the first task starts
running in the real system, e.g., job-j is the jth job that is
allocated slots in CFQ. For job-j, let Lj be the required slot-
time, which is the time to run all tasks of the job sequentially
using one slot. Slot-time characterizes the processing work
required by a job. Let L

max

denote the maximal slot-time,
and l

max

the maximal task runtime on one slot. Finally, let fj
denote the completion time of job-j in CFQ, and ¯fj the GPS
completion time. Table I summarizes the notations used in the
analysis.

We establish the constant delay bound of CFQ through the
following theorem.

Theorem 1 (Constant delay bound): With CFQ, a job
is guaranteed to complete within a constant time after its
completion in GPS, i.e., for each job-j, we have

fj � ¯fj  2l
max

+ L
max

/M. (2)

Proof: Unless otherwise stated, we refer to the job
execution in the real system using CFQ. For each job-j, we
consider its slowdown period. Let aj be the arrival time of
job-j. Depending on the number of available slots at time aj ,
job-j is either slowed down, or allocated a sufficient number of
slots to run all tasks right after the arrival. In particular, let ej
be the time when the slowdown period of job-j ends. We have
aj < ej if job-j experiences slowdown, and aj = ej otherwise.
In either case, after the slowdown period, job-j runs all the
backlogged tasks in parallel, and is guaranteed to complete
after at most the maximal task runtime, i.e.,

fj  ej + l
max

. (3)

Therefore, to bound the job completion time, it is critical to
analyze when the slowdown period ends (i.e., ej). We next
consider the following two cases.

Case 1: Job-j experiences no slowdown, i.e., aj = ej . We
consider the reference GPS system. To finish job-j as quickly
as possible, GPS should service the job using all M slots.
Therefore, job-j completes in GPS no earlier than

¯fj � aj + Lj/M = ej + Lj/M. (4)

Subtracting (4) from (3), we have

fj � ¯fj  l
max

� Lj/M  l
max

.

Case 2: Job-j is slowed down right after the arrival, i.e.,
aj < ej . During the slowdown period [aj , ej], all the slots
are busy. Let job-i be the one with the smallest index whose
arrival starts a busy period until ej , i.e., all slots keep busy
during [ai, ej]. Because job-i is such a job with the smallest
index, there must be an available slot right before its arrival at
ai. We next study the job executions in [ai, ej] to bound ej .

While CFQ preferentially offers slots to jobs in ascending
order of their GPS completion times, jobs may start services
out of order due to the dynamic arrivals. In particular, a job
that completes before job-j in GPS may arrive late, after
job-j starts in CFQ. Let A be the set of all these jobs, i.e.,
A = {k | k > j and ¯fk  ¯fj}. On the other hand, a job
that completes after job-j in GPS may start earlier in CFQ,
before job-j arrives. Let job-m be such a job that is serviced
the most recently. That is, m is the largest integer satisfying
both i  m  j � 1 and ¯fm > ¯fj , i.e., ¯fm > ¯fj � fk for
all m < k < j. In other words, job-m completes after jobs
m + 1, . . . , j in GPS, but is allocated slots before all these
jobs in CFQ. We further consider the following two sub-cases.

Case 2-1: No such a job-m exists. We start to analyze ¯fj ,
the GPS completion time of job-j. Let B = {k | i  k  j}.
By definition, in CFQ, jobs in A and B start services no earlier
than job-i. Because CFQ is work-conserving, and there is a
slot available right before job-i arrives at time ai, jobs in A
and B must arrive no earlier than ai—otherwise, CFQ would
have allocated slots to them before job-i. On the other hand,
by definition, jobs in A and B complete no later than job-j in
GPS. Therefore, starting from the moment job-i arrives, GPS

has finished all the jobs in A[B by the time job-j completes.
The earliest possible GPS completion time of job-j is

¯fj � ai +
1

M

P
k2A[B Lk. (5)

We next bound fj , the completion time of job-j in CFQ.
By (3), this is equivalent to bounding ej , the time when the
slowdown period of job-j ends. We make the following two
observations regarding the slowdown period [aj , ej] of job-j.

1) All slots are busy in [aj , ej];
2) Jobs that are allocated slots by CFQ during [aj , ej]

complete no later than job-j in GPS.
Based on these observations, we establish a case where ej

reaches the maximum. Since jobs in A and B complete no later
than job-j in GPS, it is possible that these jobs are all serviced
in [ai, ej]. In addition, by the time job-i arrives at ai, at most
M � 1 slots are busy servicing tasks of other jobs. Therefore,
during the time interval [ai, ej], CFQ has completed, at most,
all the jobs in A and B along with M � 1 tasks requiring a
maximal runtime. Since all the M slots are busy in [ai, ej],
finishing these workloads takes at most

ej  ai +
1

M

⇥P
k2A[B Lk + (M � 1)l

max

⇤
. (6)

Plugging (6) into (3) and subtracting (5), we have

fj � ¯fj  l
max

+

M�1

M l
max

< 2l
max

.

Case 2-2: Such a job-m exists. Let C = {k | m < k  j}.
By definition, jobs in A and C, though completing earlier than
job-m in GPS, are serviced no earlier than job-m in CFQ.
These jobs must have not yet arrived before job-m is allocated
slots—otherwise CFQ would have serviced them before job-m.
We then have

mink2A[C {ak} � bm, (7)

where bm is the first time when job-m is allocated slots in CFQ.
This suggests that since bm, GPS has completely serviced, at
least, all jobs in A [C by the time job-m finishes, i.e.,

¯fj � bm +

1

M

P
k2A[B Lk. (8)

We next analyze fj , the completion time of job-m in CFQ.
With a similar argument in Case 2-1, we see that during time
interval [bm, ej], CFQ may have completed all the jobs in A
and C, along with M � 1 tasks requiring a maximal runtime.
In addition, unlike Case 2-1, job-m is allocated slots at bm,
and may also complete before ej . Finishing all these works
using all M slots takes at most

ej  bm +

1

M [

P
k2A[C Lk + Lm + (M � 1)l

max

]. (9)

Plugging (9) into (3) and subtracting (8), we have

fj � ¯fj  l
max

+

M�1

M l
max

+ Lm/M < 2l
max

+ L
max

/M.

Remarks. We make two remarks on Theorem 1. First, the
delay bound is a small constant in real systems. Recall that
L
max

is the maximal slot-time of a job, we interpret L
max

/M
as the time required to run a job alone in a cluster, using all M

slots. In large clusters like datacenters, the number of slots is
usually greater than the degree of parallelism of a job, meaning
that running a job alone in a cluster takes approximately the
same time as running a task on one slot. The delay bound is
therefore approximately the runtime of a few tasks.

Second, Theorem 1 states that CFQ achieves the predictable
performance without delaying a job long after its GPS com-
pletion, but the job may complete much faster than in GPS,
because CFQ mimics the behaviors of SRPT to minimize
the mean response time. We shall validate its performance
optimality through experiments in Sec. V.

C. Implementation
Virtual time implementation. To implement CFQ as a

cluster scheduler in real systems, we need to maintain the job
completion order in the reference GPS system efficiently. This
is conceptually similar to fair queueing algorithms tracking
the packet completion order in GPS, where the virtual time
implementation applies [16], [17]. Similarly, we define virtual
time V (t) as a function of real time t evolving as follows:

V (0) = 0,
d

dtV (t) = M/ ¯Nt.
(10)

Here, ¯Nt is the number of active jobs in GPS at time t, and
M/ ¯Nt is the service rate (slots per unit time) each job receives
in GPS at time t. Thus, V (t) can be interpreted as increasing
at the marginal rate at which jobs receive services in GPS.

When a job-j arrives at time aj , CFQ profiles its required
slot-time Lj , using the state-of-the-art job profiling techniques
(e.g., [12], [25]–[28]). CFQ then associate the job with virtual
finish time Fj , which indicates the virtual time at which the
job completes in GPS, i.e.,

Fj = V (aj) + Lj . (11)

The virtual time of a job, once calculated, requires no update
in the future. This is because the one with the smallest Fj will
always complete first under GPS. Therefore, whenever a slot
becomes available, CFQ offers it to the job with the smallest
virtual finish time. The scheduling complexity is O(logN).

Job profiling. The virtual time implementation allows CFQ
to profile each job only once, upon the arrival. Because job
profiling is needed by any performance-optimal schedulers,
e.g., [10], [12]–[14], CFQ incurs the least profiling overhead
among these schedulers.

There are a wide spectrum of job profiling techniques that
CFQ can use. For example, for recurring jobs that repeatedly
run on the same or similar datasets, the performance can be
accurately quantified from previous runs [12], [25], [26]. For
non-recurring jobs with no historical information, accurate
performance prediction models can also be quickly built by
sampling the job behavior on a small subset of data [27], [28].

Despite the recent advances in job profiling techniques,
profiling errors remain unavoidable. We next show in the
experiments that CFQ is insensitive to these errors, and can
achieve a salient performance improvement even with a naive,
inaccurate profiling algorithm.

0 100 200 300 400
0

100

200

300

400

Job Width (Number of Tasks)

M
ea

n
 T

as
k

 R
u

n
ti

m
e

(s
)

(a) Job size and task runtime.

0 100 200 300 400 500
0

100

200

300

Job ID
A

rr
iv

al
 T

im
e

(s
)

(b) Job arrival times.

Fig. 4: Illustration of job profiles in the workloads sampled
from the Google traces [20].

V. EVALUATION

We have implemented CFQ as a pluggable Spark scheduler
and evaluated its performance in a 100-node cluster. For
performance study at a larger scale, we resort to trace-driven
simulations over the production traces in a Google’s cluster.

A. Setup

Cluster. We ran experiments in a 100-node Amazon EC2
cluster. For each node, we used an m4.large EC2 instance
and configured it to host 2 compute slots. In total, the cluster
consists of 200 cores and 800 GB memory.

Workload. We ran workloads based on traces from Google
[20]. The traces consist of a mix of experimental and production
jobs running in a cluster of 12K machines in one month. Given
the large scale of the traces, we sampled 500 jobs in a one-hour
window, and used them as the input workloads. Our sampling
retains the original job profiles, including the distribution of
the inter-arrival times of jobs, the number of tasks a job has,
and the average task runtime of a job. Fig. 4 depicts the job
profiles of the workloads. In Fig. 4a, the placement of a circle
indicates the number of tasks a job has—known as the job
width—and its average task runtime. The size of a circle is
proportional to the required slot-time of a job. We see from
Fig. 4a that the workloads are dominated by narrow jobs with
no more than 5 tasks. Unlike wide jobs, narrow jobs may not
necessarily have short-running tasks—some run hundreds of
seconds. We also plot the job arrival times in Fig. 4b, from
which we observe a uniform jobs arrival pattern.

Baselines. Throughout the experiments, we compare CFQ
against the two built-in Spark schedulers: FIFO and fair
scheduler (FAIR) [4], which represent the two most widely
deployed schedulers in today’s datacenters. In addition, we have
implemented SRPT as an aggressive baseline that minimizes
the mean response time without any fairness concern. We shall
highlight the near-optimal performance of CFQ by showing
that it achieves the similar job response time to SRPT.

Metrics. We consider two metrics: slowdown and normalized
response time. In particular, we define slowdown for each job
as the response time due to a scheduler normalized by the
minimum response time if the job were running alone in the
cluster:

Slowdown =

Compared Response Time
Min Response Time If Running Alone

.

10
0

10
1

10
2

10
30

0.2

0.4

0.6

0.8

1

Job Reponse Time (s)

F
ra

ct
io

n

o
f

 J
o

b
s

FIFO
FAIR
CFQ
SRPT

Fig. 5: CDF of job response times using different schedulers.

1−10 11−50 >50 All
0

5

10

15

20

25

Job Bin (Number of Tasks)
M

ea
n

 S
lo

w
d

o
w

n

 1.1

 4.4

15.9

 2.1
1.1 1.5

4.9

1.31.1 1.6

4.0

1.3

FAIR
CFQ
SRPT

Fig. 6: Mean slowdown binned by job widths.

In addition, we compare a scheduler against CFQ by measuring
its job response time normalized by that under CFQ, i.e.,

Normalized Response Time =

Compared Response Time
Response Time under CFQ

.

That is, compared to the given scheduler, a job runs slower
(faster) using CFQ if its normalized response time is less
(greater) than 1.

B. Deployment Results

Our experiments start with accurate job profiling. We shall
show later that CFQ is highly insensitive to profiling errors.

Response time. Fig. 5 shows the distribution of job response
times using the four schedulers. As expected, FIFO performs
the worst. Because the newly arrived jobs have to wait for the
existing ones to complete, an elephant job delays all the late
comers, among which many are mice jobs. These mice will
soon complete after the elephant, resulting in a big jump of
the FIFO curve in Fig. 5. This problem is avoided using the
other three schedulers with smooth CDF curves. Among them,
CFQ and SRPT minimize the job response times.

Given the poor performance of FIFO, we exclude it from
further comparisons. To better understand the performance of
the other three schedulers, we divide jobs into 3 bins based
on their widths: narrow (1-10 tasks), medium (11-50 tasks),
and wide (>50 tasks). Fig. 6 compares the mean slowdown of
the three schedulers in 3 bins, where the error bar measures
one standard deviation. We see from the figure that narrow
jobs experience almost no slowdown under all three schemes.
These jobs consist of a small number of tasks, all of which
can be accommodated in one wave using a fair share of the
slots. Given their fast completion under fair sharing, these jobs
are likely prioritized by CFQ. In addition, because narrow jobs
typically have small slot-time (Fig. 4a), they are prioritized by

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Normalized Response Time

F
ra

ct
io

n

o
f

 J
o

b
s

Fig. 7: Distribution of the normalized response time using
FAIR. A job is sped up using CFQ if its normalized response
time is greater than 1; otherwise, the job is slowed down.

SRPT as well. However, the performance of wider jobs varies
using different schedulers. Compared to CFQ, FAIR results in
2.9⇥ and 3.2⇥ longer response time on average for medium
and wide jobs, respectively. This is because fair allocations
cannot accommodate all these jobs’ tasks at a time, forcing
them to run in multiple waves. CFQ eliminates this inefficiency
by preferentially offering slots to jobs that complete earliest in
GPS, which reduces the mean slowdown by 40%. That CFQ
exhibits almost the same slowdown performance as SRPT in all
3 bins highlights the near-optimal performance of our design.

Fairness. We have shown in Theorem 1 that with CFQ, jobs
are guaranteed to complete within a small constant time after
completion in GPS. Given that GPS is an idealized scheduler,
in real systems FAIR is deployed to achieve the predictable
performance. A natural question is: can jobs expect a similar
delay guarantee with respect to FAIR using CFQ? We measured
the normalized response time of each job using FAIR and
depict the distribution in Fig. 7. More than 40% of jobs have
normalized response time greater than 1, meaning that they are
sped up using CFQ. The average speedup is over 75%. The
price paid is an average of 7% slowdown of the other 30% of
jobs, among which less than 10 jobs suffer from more than
20% longer response time. All these results indicate that CFQ
does not delay jobs long after their completion using FAIR.

Sensitivity to profiling errors. So far, our evaluations are
based on accurate job profiling. However, profiling errors are
inevitable in practice. How do the errors impact the performance
of CFQ? We answer this question through two experiments.
Given that the state-of-the-art workload profiling techniques can
already achieve less than 20% error [27], in the first experiment
we evaluated CFQ with a uniform prediction error up to 20%.
In particular, for job-j with slot-time Lj , CFQ profiles its slot-
time as ˜Lj , a uniform random variable in [0.8Lj , 1.2Lj]. For
each job, we measured the response time using CFQ with up
to 20% profiling error, and normalized it by that with accurate
profiling. Fig. 8 shows the normalized response time binned by
job widths. We observe that, despite the profiling error, CFQ
achieves almost the same job response times as that of accurate
profiling in all bins. Intuitively, CFQ uses the slot-times only to
determine the job completion order in GPS: a small prediction
error does not result in a different order.

In the second experiment, we stress-tested CFQ’s insensitiv-

1−10 11−50 >50 All
0

2

4

6

Job Bin (Number of Tasks)

N
o
rm

al
iz

ed
 R

es
p
o
n
se

 T
im

e

1.0 1.0 1.0 1.01.0
1.4

3.0

1.1

w/ 20% Profiling Error
w/ Naive Profiling

Fig. 8: CFQ is insensitive to profiling errors. For each job,
we measured its response time using CFQ with inaccurate
profiling, normalized by that with accurate profiling.

ity of profiling errors. Specifically, we used a naive profiling
algorithm in CFQ that estimates the slot-time of a newly
submitted job-j as ˜Lj = nj ⇥ ˜lj , where nj is the number
of tasks job-j has, and ˜lj is the cumulative average of task
runtime up to job-j’s arrival. This simple profiling is highly
inaccurate. Similar to the previous experiment, we measured the
job response time using naive profiling by that using accurate
profiling. Fig. 8 shows the normalized response time binned by
job widths. To our surprise, even with such a naive profiling
algorithm, the mean response time is increased by only 10%
compared to the perfect prediction. In particular, inaccurate
profiling hurts wide jobs the most, whereas narrow jobs are the
least affected. We see from the two experiments that CFQ is
highly insensitive to profiling errors, even with naive profiling.

Micro-benchmark. Our previous experiments highlight the
near-optimal performance of CFQ close to SRPT. We now use
micro-benchmark to contrast the different behaviors of the two
schedulers on a small-sized cluster in a more controlled manner.
In particular, we ran two types of jobs in a cluster of 10 EC2
m4.large instances: an elephant job consisting of 20 tasks each
running 2 s, and a mice job consisting of 8-12 tasks running
0.8–1.2 s. Jobs arrived to the cluster uniformly over time. We
ran five micro-benchmarks with one elephant and a variable
number of mice. Fig. 9 compares the measured response time of
the elephant in five micro-benchmarks, using CFQ and SRPT,
respectively. We find that with SRPT, the response time of
the elephant increases linearly with the increasing number of
mice—the elephant is starved if mice keep arriving over time.
In contrast, CFQ isolates the performance of the elephant from
the others, with predictable completion time that is independent
to the dynamic arrival of mice.

C. Simulation Results
To understand performance at a larger scale, we use trace-

driven simulations. We simulated a 1000-node cluster with
8K slots and fed it the workloads sampled in the first 20
hours from the Google traces [20]. In total, we ran 543K
tasks across 17K jobs using different schedulers. For each job,
we measured its slowdown. Fig. 10 shows the distribution of
the slowdown binned by job widths. Boxes depict 25th, 50th,
and 75th percentiles; whiskers depict 5th and 95th percentiles.
We observe the similar performance trend as in our Spark

10 20 30 40 50
0

10

20

30

40

Number of Mice Jobs

R
es

p
o

n
se

 T
im

e
 o

f
E

le
p

h
an

t
Jo

b
 (

s)

 9.6

14.7 14.7 14.8 14.8

 9.3

15.5

21.4

28.1

34.4CFQ
SRPT

Fig. 9: The response time of the elephant job when running with
a variable number of mice, using CFQ and SRPT, respectively.
CFQ does not starve the elephant, but SRPT does.

Job Width (Number of Tasks)
1-10 11-100 101-500 >500

S
lo

w
d

o
w

n

10
0

10
1

10
2

10
3

10
4

FIFO
FAIR
CFQ
SRPT

Fig. 10: Distribution of job slowdown using the four schedulers.
Boxes depict 25th, 50th, and 75th percentiles; whiskers depict
5th and 95th percentiles.

deployment. In particular, FIFO performs the worst in all job
bins, resulting in orders of magnitude longer response time.
Among the other three schedulers, SRPT and CFQ simply
outperform FAIR with an order of magnitude smaller slowdown
in all bins but the narrow jobs. When it comes to SRPT
and CFQ, while SRPT wins in performance, CFQ is a close
follower that ties SRPT in all bins but jobs with more than 500
tasks. Our simulation results further reinforce the near optimal
performance of CFQ.

VI. CONCLUSION

In this paper, we propose a new scheduler, Cluster Fair
Queueing (CFQ), which aims to minimize the mean response
time of jobs while achieving the predictable performance. CFQ
preferentially offers compute slots to jobs that complete the
earliest in GPS, an idealized fair scheduler that enforces perfect
fairness in a cluster at all time. We demonstrate that with CFQ,
jobs are guaranteed to complete within a small constant time
after their completion in GPS. We have implemented CFQ in
Spark and evaluated its performance on a 100-node Amazon
EC2 cluster and in simulations with traces from a Google’s
cluster. Both implementation and simulation results show that
CFQ is able to achieve the near-optimal job response time as
SRPT, and is insensitive to job profiling errors.

ACKNOWLEDGEMENT

This work was supported in part by grants from RGC under
the contracts 615613, 16211715 and C7036-15G (CRF), a grant
from NSF (China) under the contract U1301253, as well as a
Microsoft Research Asia Collaborative Research Grant.

REFERENCES

[1] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in USENIX
NSDI, 2012.

[2] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache Hadoop
YARN: Yet another resource negotiator,” in ACM SoCC, 2013.

[3] “Hadoop Fair Scheduler,” http://hadoop.apache.org/docs/r1.2.1/fair_
scheduler.html, 2015.

[4] “Spark Job Scheduling,” https://spark.apache.org/docs/1.6.0/
job-scheduling.html, 2016.

[5] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple resource
types,” in USENIX NSDI, 2011.

[6] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Choosy: Max-min
fair sharing for datacenter jobs with constraints,” in ACM EuroSys, 2013.

[7] A. A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi, S. Shenker, and
I. Stoica, “Hierarchical scheduling for diverse datacenter workloads,” in
ACM SoCC, 2013.

[8] J. Tan, X. Meng, and L. Zhang, “Delay tails in mapreduce scheduling,”
in ACM SIGMETRICS, 2012.

[9] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling,” in ACM EuroSys, 2010.

[10] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” in ACM SIGCOMM,
2014.

[11] B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlós, “On scheduling in
map-reduce and flow-shops,” in ACM SPAA, 2011.

[12] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca, “Jockey:
guaranteed job latency in data parallel clusters,” in ACM EuroSys, 2012.

[13] M. Lin, L. Zhang, A. Wierman, and J. Tan, “Joint optimization of
overlapping phases in mapreduce,” Perf. Eval., vol. 70, no. 10, pp. 720–
735, 2013.

[14] Y. Wang, J. Tan, W. Yu, L. Zhang, and X. Meng, “Preemptive reducetask
scheduling for fair and fast job completion,” in USENIX ICAC, 2013.

[15] M. Pastorelli, D. Carra, M. Dell’Amico, and P. Michiardi, “Hfsp: Bringing
size-based scheduling to hadoop,” 2015.

[16] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queueing algorithm,” in ACM SIGCOMM, 1989.

[17] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: The single-
node case,” IEEE/ACM Trans. Netw., vol. 1, no. 3, pp. 344–357, 1993.

[18] J. M. Blanquer and B. Özden, “Fair queuing for aggregated multiple
links,” in ACM SIGCOMM, 2001.

[19] K.-K. Yap, N. McKeown, and S. Katti, “Multi-server generalized
processor sharing,” in ACM Intl. Teletraffic Congrass (ITC), 2012.

[20] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace analysis,”
in ACM SoCC, 2012.

[21] L. Schrage, “A proof of the optimality of the shortest remaining
processing time discipline,” Oper. Res., vol. 16, no. 3, pp. 687–690,
1968.

[22] K. Pruhs, J. Sgall, and E. Torng, “Online scheduling,” in Handbook of
Scheduling: Algorithms, Models, and Performance Analysis. CRC Press,
2004.

[23] E. J. Friedman and S. G. Henderson, “Fairness and efficiency in web
server protocols,” in ACM SIGMETRICS, 2003.

[24] G. Buttazzo, Hard real-time computing systems: predictable scheduling
algorithms and applications. Springer Science & Business Media, 2011.

[25] B. He, M. Yang, Z. Guo, R. Chen, W. Lin, B. Su, H. Wang, and L. Zhou,
“Wave computing in the cloud,” in Proc. ACM HotOS, 2009.

[26] A. Verma, L. Cherkasova, and R. H. Campbell, “ARIA: automatic
resource inference and allocation for mapreduce environments,” in ACM
ICAC, 2011.

[27] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica, “Ernest:
Efficient performance prediction for large-scale advanced analytics,” in
USENIX NSDI, 2016.

[28] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron,
“Bridging the tenant-provider gap in cloud services,” in ACM SoCC,
2012.

