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Abstract— WiFi-based localization has received increasing at-
tentions these years as WiFi devices are low-cost and universal.
Recent years, tens of WiFi-based localization systems have
been proposed which could achieve decimeter-level accuracy
with the commercial wireless cards and with no specialized
infrastructure. However, such systems require the positions of
the Access Points or fingerprint map to be known in advance. In
this paper, we present CWISE, an accurate WiFi-Inertial SLAM
system without the requirement for Access Points’ positions,
specialized infrastructure and fingerprinting. CWISE relies only
on a commercial wireless card with two antennas and an IMU.
We test the CWISE system on a flying quadrotor and it shows
that the system is able to work in real time and achieves the
mean accuracy of 1.60m.

I. INTRODUCTION

State estimation is the fundamental requirement for many
robotic applications such as UAV and self-driving car. Many
researchers have proposed various state estimation methods
using laser scanner [1] [2], stereo cameras [3] [4], monocular
camera [5] [6] [7], and RGB-D sensors [8]. Laser-based
methods could achieve centimeter level accuracy at indoor
environments, but they are limited by the requirement for
expensive laser sensor. Vision-based approaches obtain great
success due to the property of low cost, high accuracy
and light weight. However, vision-based approaches require
sufficient lighting and features, and they do not work at dark
or featureless environments. While WiFi-based approaches
could potentially solve these problem, because WiFi devices
are cheap, universal and unaffected by the light or feature.

The main goal of this paper is to develop a WiFi-based
state estimation system that is:
• deployable: The system should be easily deployed on

existing commodity WiFi infrastructure without requir-
ing any hardware change to the access points (APs).

• accurate: The system should be as accurate as compara-
ble with GPS to be used for autonomous flight of aerial
robots.

• on-the-fly: The system should be always ready to work
without any preparation when operates at a new place.
For example, there should be no need to measure the
positions of the APs and no need to build the fingerprint
map of the WiFi signal.

To the best of our knowledge, there is no WiFi-based
system satisfying all these three properties. RSSI based
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systems are easily deployable but are not accurate. Their
accuracy ranges from 2-4 m [9] which is not sufficient
for robotic navigation. Recent methods that are based on
angle-of-arrival (AoA) estimation such as ArrayTrack [10]
and Phaser [11] are accurate but they need to modify the
hardware to obtain a multiple antennas (5-8) system. Other
AoA-based approaches such as Ubicarse [12] and SpotFi [13]
are deployable and accurate, but they cannot be used on
highly dynamic system. Additionally, all these approaches
above need to know the positions of APs in advance, hence
they are not on-the-fly.

The main contribution of this paper is a real time WiFi-
Inertial state estimation system which is deployable, accurate
and on-the-fly. Our system estimates the location of both
the platform and APs using a SLAM-style formulation. We
implement our system on DJI Matrices 100 platform, and the
onboard processor is Intel NUC computer running Ubuntu
Linux. The computer is equipped with a commercial Intel
5300 wireless card and a LORD MicroStrain IMU (3DM-
GX4-25). Our system can achieve the mean accuracy of
1.60 m compared with the position fused from GPS and
IMU, it requires no hardware modification to the APs and
no knowledge of APs’ positions or fingerprint map. Only the
angle of arrival extracted from CSI and IMU information are
used (sect. III), and sliding window filter is used to make the
metric scale observable which is similar to the monocular
visual-inertial fusion [14] (sect. IV).

The rest of this paper is organized as follows: Section II
gives an overview of the related work. Section III presents the
calculation of AoA with commercial NIC card. Section IV
talks about the fusion of WiFi and IMU. Section V shows
the simulation and experimental results and concludes the
paper with some future work.

II. RELATED WORK

WiFi-based localization is well studied in the literature and
a lot of methods have been proposed in recent years, which
can mainly be classified into three types.

RSSI based approaches: The idea of such system is to
measure the received signal strength from multiple APs
which is related to the distances between the target and the
APs, and then solve the target’s position by combining all
the constraints together as a nonlinear least square problem.
Since the model of RSSI depends not only on the distance
but also on the environment, for example, the RSSI through
the wall decades greatly, most RSSI based approaches only
achieve room-level accuracy. The best known such system
can achieve a median accuracy of 2-4 m [15] [16]. Addition-
ally, the APs’ positions must be known to solve the nonlinear
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least square problem.
Fingerprinting based approaches: This class of systems

first collect fingerprint such as the vector of RSSIs or CSIs
to all APs for all the cells on the map. Then they could
locate the target by choosing the most similar vector in the
map [17] [18]. The best known system using this approach
achieves the median accuracy of 0.6 m [17]. However,
these systems require expensive and recurring fingerprinting
operation when the environment is changed (e.g., the door
is opened or the chair is moved).

AoA based approaches: After CSI-tools using Intel 5300
[19] and Atheros ar9300 [20] wireless card being released,
AoA estimation has become available with commercial wire-
less card and AoA based WiFi localization has become
a popular research area for indoor localization. Several
researchers have successfully implemented their accurate
AoA based WiFi localization system using CSI information
from commercial wireless card [12] [11] [13] [21], e.g.,
Ubicarse [12], SpotFi [13], and Phaser [11]. Phaser could
achieve median accuracy of 1 m, however, it needs to modify
the hardware to combine two wireless cards with three
antenna as one with five antennas. Ubicarse could achieve the
median accuracy of 0.4 m without hardware modification in
complex indoor environments, however, it needs the user to
rotate two antennas while walking. SpotFi could also achieve
comparable result as Ubicarse while it does not need to rotate
the antennas and does not need additional inertial sorcerers.
Unfortunately, all of these approaches above assume that the
APs’ positions are known in advance to locate the target.

III. CSI-BASED AOA ESTIMATION
A. CSI Measurement

It is well-known that the performance of wireless networks
depends heavily on the physical layer details of the RF chan-
nel [19]. However, until 2009, only high-level information
about wireless conditions like RSSI values were available
from commodity 802.11 wireless card which contributes little
to understanding the channel state. Fortunately, the IEEE
802.11n standard defines a mechanism for transmission of
CSI between the receiver and the transmitter. Unlike the

RSSI, the CSI records the signal strength and the phase
information for all sub-carriers between each pair of trans-
mitter and receiver. This standardized mechanism allows the
transmitter to improve the link performance via transmit
beam-forming. Halperin et al. [19] and Xie et al. [22] have
built their tools for collecting CSI information at sub-carrier
level on Intel 5300 and Atheros ar9300 wireless card re-
spectively. Many researchers have successfully implemented
WiFi localization system based on these tools and some of
which could achieve decimeter level median accuracy.

Channel state information (CSI) provides the information
that represents the channel’s properties of a communication
link with amplitude and phase. It reveals the combined effect
for the wireless channel, for example, fading and scattering.
To be more specific, CSI describes how a signal propagates
from the transmitter(s) to the receiver(s) [23]. In fact, the ac-
curacy of CSI greatly influences communication performance
of OFDM (Orthogonal Frequency Division Multiplexing)
system.

Because electromagnetic signals superimpose on the wire-
less channel, we can express the propagation as a linear
system:

y = Hx + n,

where x is the transmitted signal, y is the received signal,
H is the channel matrix and n is the noise signal.

B. AoA Estimation

To estimate the AoA of the signal from the APs, at least
two antennas are required to measure the relative phase
between two antennas. For simplicity, it is assumed that both
the transmitter and the receivers lie on a two-dimensional
plane and the signal has only single path. Suppose the AoA
of the line-of-sight signal is α, as illustrated in figure 2. The
wireless channels measured by the receive antenna 1 and
receive antenna 2 at ith sub-carrier can be written as the
complex number:

y1,i = ‖y1,i‖e
−j2πd
λi xi,

y2,i = ‖y2,i‖e
−j2π(d−r cos(α))

λi xi,

where r denotes the distance between the two antennas,
d represents the traveling distance from the transmitter to
the first antenna, and λi is the signal wavelength of ith

sub-carrier. According to the IEEE 802.11n-2009 standard,
the 20MHz bandwidth for each channel is divided into 64
equally spaced sub-carriers with 125KHz bandwidth. For the
Intel 5300 wireless card, only 30 sub-carriers of index si =
{−28,−26,−24,−22,−20,−18,−16,−14,−12,−10,−8,
−6,−4,−2,−1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27,
28} are measured, and the corresponding frequencies are

fi = f + si ∗ 125KHz,

where f is the central frequency of the channel.
We use λ to represent the smallest wavelength for all the

sub-carriers and we choose r = λ
2 to maximize the resolution
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of phase measurement while avoiding the phase ambiguity.
Note the assumption that d >> r, i.e., the transmitter is far
away from the receiver relative to the distance between the
two antennas.

To obtain the equation unrelated to the distance between
the transmitter and receiver, we define the relative wireless
channel at the ith sub-carrier as ŷi = y2,iy

∗
1,i, where (.)∗

means the complex conjugate. Mathematically, the relative
channel is simplified as

ŷi = y2,iy
∗
1,i = ‖y1,i‖‖y2,i‖‖xi‖2e

j2πr cos(α)
λ .

The phase measurement equation can be written as

6 ŷi = ψi =
2πr cos(α)

λi
,

where ψi is the measured phase of ith sub-carrier.
Therefore, the estimated angle is

α = ± arccos(
ψiλi
2πr

). (1)

We use the mean value of estimated AoA from all sub-
carriers as the final estimation.

According to (1), there are two possible AoAs because of
side ambiguity. The side ambiguity can be solved using the
method used in Ubiscare [12] by rotating the antennas. We
only use this method at the initialization step, after which
the AoA will be tracked.

IV. LINEAR SLIDING WINDOW WIFI-INERTIAL
FUSION

In this section, we present an optimization-based WiFi-
Inertial fusion method, which is modified from the original
visual-inertial fusion framework [24] for accurate state esti-
mation. Note that WiFi only provides AoA information, but
with IMU we are able to estimate the metric position and
velocity.

We consider N as the earth’s inertial frame, W as the WiFi
antenna frame, B as the IMU body frame, and Bk as the
body frame while taking kth WiFi measurement. Since the
IMU runs at a higher rate in our system, there are more than
one IMU measurements between Bk and Bk+1. We assume
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Fig. 3: CSI phase: (a) unwrapped CSI phase, (b) relative
phase between antenna 1 and antenna 2. It can be seen that
the phases between different sub-carriers varies greatly, but
the relative phases between two antennas are very stable

that the WiFi antenna and the IMU are pre-calibrated such
that the transformation between body frame and the WiFi
antenna frame is known. pXY , vXY and RX

Y are 3D position,
velocity and rotation of frame X with respect to frame Y.
gG = [0, 0, g]T is the gravity vector in the earth’s inertial
frame, and gX is the earth’s gravity vector expressed in frame
X.

A. Linear Sliding Window Estimator

We apply a sliding window graph-based formulation be-
cause it can accurately solve the problem with constant
computation complexity. The full state parameter vector is

x = [xB0

B0
,xB0

B1
, ...xB0

BN
,a1,a2, ...aM ]

xB0

Bk
= [pB0

Bk
,vBkBk ,g

Bk ] for k = 1, 2...N

pB0

B0
= [0, 0, 0]

where xB0

Bk
is the kth WiFi state, N is the number of WiFi

state in the sliding window, M is the number of the Access
Points which have been observed within the sliding window.
al is the lth Access Point’s position. We keep the body frame
velocity vBkBk and gravity vector gBk in the state vector to
reduce the impact of rotation error on the estimation results.
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Since the APs’ positions are unknown, essentially, this
is a SLAM problem. We can formulate the problem as a
linear WiFi-Inertial state estimation problem by combining
all the measurements from both IMU and WiFi and solve the
maximum likelihood estimation problem by minimizing the
sum of the Mahalanobis norm of all measurement errors:

min
χ

{
(bp − Λpχ) +

∑
k∈D

‖ẑBkBk+1
− ĤBk

Bk+1
χ‖

2

P
Bk
Bk+1

+
∑

(l,j)∈C

‖ẑBjl − Ĥ
Bj
l χ‖

2

P
Bj
l

}
,

where the measurements {ẑBkBk+1
, ĤBk

Bk+1
,PBk

Bk+1
} and

{ẑBjl , Ĥ
Bj
l ,P

Bj
l } are defined in sect. IV-D and sect. IV-

E respectively. D is the set of all IMU measurements and
C is the set of WiFi measurements between all the Access
Points and WiFi states within the sliding window. {bp,Λp}
is the optional prior information for the system. Since all
the constraints are linear, this system can be solved by re-
organizing in the following form:

(Λp + Λimu + ΛWiFi)χ = (bp + bimu + bWiFi),

where {Λimu,bimu} and {ΛWiFi,bWiFi} are the informa-
tion matrices and vectors for the IMU and WiFi measure-
ments respectively.

B. Marginalization

To bound the computational complexity, only the latest
states are kept in the state vector by removing the oldest robot
state and the out-of-range APs. However, if the parameters
are removed from the system equations directly, some infor-
mation will be lost and the scale will become unobservable
using only the measurements within the sliding window. The
correct way to remove the parameters is to marginalize them
out, which is equivalent to applying the Schur complement
to the least square equations as described in [14] and [24].

Given the system[
Λ1 Λ2

ΛT
2 Λ3

] [
x1

x2

]
=

[
b1

b2

]
,

assume the state x1 is the part to be removed from current
state, by left multiplying a matrix, the system can be rewrit-
ten as[

Λ1 Λ2

0 Λ3 −ΛT
2 Λ−11 Λ2

] [
x1

x2

]
=

[
b1

b2 −ΛT
2 Λ−11 b1

]
,

where the term ΛT
2 Λ−11 Λ2 is called the Schur complement

of Λ1 in Λ2. Then the smaller lower-right system

Λ3 −ΛT
2 Λ−11 Λ2x2 = b2 −ΛT

2 Λ−11 b1

can be used as a new constraint in next step and the
size of the state vector can be bounded by incremental
marginalization.

C. Inertial Preintegration

Given more than one IMU measurements between Bk and
Bk+1, we can summarize all these IMU measurements as one
motion constrain according to Inertial Preintegration Theory
[25].

The normal propagation model for position and velocity
in the inertial frame can be written as

pGBk+1
= pGBk + vGBk∆t+

∫ ∫ Bk+1

Bk

(RG
BaB −gG)dt2, (2)

vGBk+1
= vGBk +

∫ Bk+1

Bk

(RG
BaB − gG)dt, (3)

where ∆t is the time difference between Bk and Bk+1 and
aB is the accelerometer measurement in the body frame. It
is obvious that the rotation between the inertial frame and
body frame, RGB needs to be known in order to propagate
the state with the IMU measurements. According to the
formulation in (2) and (3), if the first pose of the system
is used as the reference frame, all the IMU measurements
between frame Bk and Bk+1 can be summarized as only
one motion constraint, (2) and (3) can be rewritten as

pB0

Bk+1
= pB0

Bk
+ vB0

Bk
∆t− gB0∆t2/2 + RB0

Bk
αBkBk+1

, (4)

vB0

Bk+1
= vB0

Bk
− gB0∆t+ RB0

Bk
βBkBk+1

, (5)

where

αBkBk+1
=

∫ ∫ Bk+1

Bk

RBk
B aB∆t2,

βBkBk+1
=

∫ Bk+1

Bk

RBk
B aB∆t,

RB0

Bk
is the rotation between B0 and Bk, which can be

obtained by fusing measurements from gyroscope and ac-
celerometer with the Extended Kalman Filter [26]. αBkBk+1

and βBkBk+1
can be obtained with only the IMU measurements

from Bk to Bk+1. We can see that the constraint equations
(4) and (5) for the state (pB0

Bk
, vB0

Bk
, gB0 ) are all linear.

D. IMU Measurement Model

Assume the rotation RB0

Bk
is given, we can rewrite (4) and

(5) as a linear function of the state χ: αBkBk+1

βBkBk+1

0

 =

 RBkB0
(p
Bk+1

B0
− pBkB0

)− vBkBk∆t+ gBk∆t2/2

R
Bk+1

B0
v
Bk+1

Bk+1
− vBkBk + gBk∆t

R
Bk+1

Bk
gBk+1 − gBk


=HBk

Bk+1
χ. (6)

The last block line in (6) is the constraint about the
gravity vector. We estimate the gravity vector for each
pose in order to avoid the negative effects due to possible
accumulated rotation error. All variables except the position
component are independent of the accumulated rotation RBkB0

,
making them insensitive to the rotation error. The linear IMU
measurement model has the form
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zBkBk+1
∼ N (HBk

Bk+1
χ,

 P
Bαβk
Bk+1

0

0 P
Bg
k

Bk+1

).

Note that αBkBk+1
and βBkBk+1

are correlated since they both
come from IMU measurements between Bk and Bk+1. The
joint covariance matrix P

Bαβk
Bk+1

can be calculated using the
pre-integration technique proposed in [27].

E. WiFi Measurement Model

Let the lth AP be the first detected in the ith frame, the
direction of this AP observed in the kth WiFi frame, dkl can
be expressed as

RBwdkl ∼ RBkB0
(ai − pB0

Bk
), (7)

where RBw is the rotation from WiFi frame to Body frame.
Specially, for two-dimensional case, if the estimated AoA is
α, the direction dkl can be expressed as

dkl = [cos(α), sin(α), 0]T

Using cross product, the constraint (7) can be converted
to linear form

bRB0

Bk
RBwdklc×(ai − pB0

Bk
) = 0. (8)

The equation (8) can be rewritten as

0 = bRB0

Bk
RBwdklc×(ai − pB0

Bk
) = HBk

l χ,

and WiFi measurement model has the form

zBkl ∼ N (HBk
l χ, dBkl

2
P̄Bk
l ),

where dBkl is the distance from the lth Access Point to the
Bk frame and P̄Bk

l is the WiFi observation noise. Note that
dBkl is unknown initially, and we initialize it with an identical
value to all the measurements.

V. RESULTS

A. Simulation Result

As there is no public data with the ground truth for WiFi
localization, we generate simulation data in gazebo and ROS.
Four APs are placed on the ground and the platform flies as
a circle pattern. The noise level of the related sensors are as
follow:

TABLE I: Noise level of the simulated sensors

Sensor Type Noise type Noise level
gyroscope Gaussian 0.01

accelerometer Gaussian 0.01
angle of arrival sensor Gaussian 0.1

The simulation results in figure 5 and 6 prove that the
trajectory of the MAV and APs’ position can be estimated
simultaneously using only the IMU and the AoA measure-
ments.
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Fig. 4: Simulation result (trajectory plot)
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Fig. 5: Simulation result (platform position). It can be seen
that the estimated platform’s position converges to the ground
truth with enough motion.
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Fig. 6: Simulation result (AP position). It shows that the AP’s
position converges to the ground truth with enough motion.
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Fig. 7: Experimental Platform equipped with an Intel NUC
computer, an Intel 5300 Wireless card with two antennas,
and an IMU

B. Implementation Details
We implement CWISE on an Intel NUC equipped with

Intel 5300 wireless card and a LORD MicroStrain IMU
(3DM-GX4-25). We build on the 802.11n CSI tool [19] to
collect the CSI information for any successfully received
packets with a specialized destination MAC address. The
access points work on injection mode and the receiver works
on monitor mode, and all the Intel 5300 wireless cards are
configured on 5GHz channel since the phase reading on
2.4GHz always have a shift of kπ

2 . Through at most three
antennas are supported for Intel 5300 wireless card, we only
use two of them because the phase reading of the third
antenna is quite noisy for injection/monitor mode. Specially,
the wavelength λ = 0.0564m (5.32Ghz) and the distance
between two antennas r = λ

2 = 0.0282m.
The APs are controlled by a server to broadcast the random

packets one by one, there is a short interval about 2 ms
between the broadcasting of different APs.

C. Experimental Results
We use an Intel NUC with Core i5 4250 processor (1.3

GHz) to compute onboard. We conduct multiple experiments
to evaluate the performance of our system. Two APs are
placed on the ground and the MAV flies at about 1 m
height with a circle pattern. Currently, only two-dimensional
positions are estimated because only the azimuth angle are
available with two antennas. The position from GPS-IMU
fusion is used as the ground truth. The standard derivation of
the estimates are {0.998, 1.263} m and the mean accuracy is
1.60 m. Since the state of the system is always unobservable
without enough motion, the standard derivation is computed
with the result after the first circle of flying. It should be
noted that the accuracy of GPS is also at meter level. The
experimental results just provide an easy comparison which
illustrates that our result is comparable with GPS.

The multi-path effect and non-line-of-sight Scenario is
not considered in the current implementation, therefore the
current system does not work at indoor environments and
clustered environments.

VI. CONCLUSIONS
In this paper, we present the first WiFi localization system

with no requirement for APs’ positions or fingerprint map.
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Fig. 8: Experimental result (platform position). Red lines are
the positions from GPS-IMU fusion, and blue lines are the
positions estimated with our method.
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Fig. 9: Experimental result (AP position). Red lines are the
ground truth of one AP’s position, and blue line are the
positions estimated with our method.

Our system only depends on a commercial wireless card and
an IMU. The main technical challenges are estimating the
angle of arrival accurately and handling the unobservability
of the localization system. Due to the limitation of the
number of antennas, currently our system only works at
outdoor environment and only two-dimensional positions
can be obtained. In the future, we would like to extern
our localization system to three-dimensional and indoor
environments.
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